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for suitable A, this property is equivalent to three different conditions concerning
the relation between A and RL, the f-ring of all continuous real-valued functions
on L.
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Recall that an archimedean kernel of an ¢-ring A is an ¢-ring ideal J of A for which A/J is archimedean,
or, expressed in elementary terms, such that

for any a,b > 0 in A, if (na —b)T € Jforalln=1,2,... then a € J.

Now, if A is a sub-f-ring of RL, the ¢-ring of all continuous real-valued functions on some frame L, always
understood to contain the unit 1 of SRL, the most obvious archimedean kernels of A are those arising from L,
that is, the

J=AnNKer(Rh)={y€ A|Rh(y) =0} ={y€ A| hy=0}

for some frame homomorphism h : L — M, where Rh : RL — RM, v — h~, is the f-ring homomorphism
determined by h. Calling the sub-f-rings A of some RL the function rings on L and the J = {y € A |
Rh(y) = 0} the L-based archimedean kernels of A, a natural condition concerning a function ring A on a
frame L is that all archimedean kernels of A are L-based. The main purpose of this note is to show this and
three other conditions on A are equivalent.
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We begin with a brief account of the concepts and facts to be used here. As general references, we suggest
Banaschewski [3] and [4] concerning real-valued continuous functions on frames, and Picado and Pultr [§]
for frames in general. For the background of [4] see Ball-Hager [1] and Madden [7].

The basic setting here is given by the adjoint functors

R:CRFrm — A and 8: A - CRFrm

between the category CRFrm of completely regular frames and the category A of archimedean f-rings with
unit 1, where AL, as mentioned already, is the ¢-ring of all real-valued continuous functions on L, that is,
the frame homomorphisms from the frame £(R) of reals to L, with the usual ¢-ring operations derived from
those of Q, and KA is the frame of all archimedean kernels of the archimedean f-ring A with unit, with the
adjunction maps

M A—=RRA awa, a(p,q) = {((na—k)" A —na)t),

k,0 € Z and n=1,2,... such that p = % and ¢ = %, where (-) indicates the principal archimedean kernel
generated by -, and

pur : RRL — L, prp({(y)) = coz(y) = \/{’y(—n,O) VAy(0,n) |n=12,...}.

Note that the definition of the above a simplifies to

((a=p)" A(g—a))

whenever A is an algebra over Q, and p and ¢ stand for pl and ¢1 for the unit 1 € A.
Now, for any function ring A on L, we have the homomorphism

pi s RATA GRL 5 L, (7) s () > con(y),

where ((-)) indicates the archimedean kernel generated by - in RL.

Next, a function ring A on a frame L is said to separate L if {coz(y) | v € A} generates L which clearly
holds iff u4 is onto. Concerning this terminology, note that, for the frame of open sets of a Tychonoff space X,
this condition means that the members of A separate points from closed sets in X (Banaschewski-Sioen [6]).

Further, for any A and L of this kind, the covers

{v(p.q) |0<g—p<i}, y€A pandginQ, andn=1,2,...

of L generate a uniformity, the A-uniformity of L, and if L is complete with respect to this it is called
A-complete. In particular, for A = RL, one calls the SR L-uniformity of L its real uniformity and L realcom-
plete iff it is completely regular and $RL-complete.

On the other hand, for any archimedean f-ring A with unit, we have the uniformity on RA, generated
by the covers

{a(p,q) |0<g—p<i}, a€Adandn=12,...,

called the A-uniformity of RA, and as a specific feature concerning the functor 8 we note that KA is
complete with respect to this, as a natural consequence of its adjointness to fR. Indeed, if h : L — KA is
the corresponding completion then any a : £(R) — KA, a € A, is trivially uniform relative to the standard
uniformity of £(R), and by the completeness of the latter this determines a : £(R) — L such that ha = a.
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