Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A compactness result in approach theory with an application to the continuity approach structure

Ben Berckmoes¹

A R T I C L E I N F O

Article history: Received 30 January 2015 Received in revised form 28 April 2015 Available online 23 December 2015

Dedicated to Eva Colebunders on the occasion of her 65th birthday

Keywords: Approach theory Compactness Continuity approach structure Prokhorov's Theorem Uniform distance Weak topology

1. Introduction

Measures of non-compactness [3] have been studied extensively in the context of approach theory [10], on an abstract level [1,2] and in specific approach settings in e.g. hyperspace theory [12], functional analysis [11], function spaces [9] and probability theory [4]. The presence of a vast literature on the interplay between compactness and approach theory is explained by the fact that the latter is a canonical setting which allows for a unified treatment of the classical concept of measure of non-compactness [8].

In this paper we contribute to the knowledge on the interplay between compactness and approach theory. In Section 2 we provide a new compactness result for a general approach space. In Section 3 we apply this result to the specific setting of the so-called continuity approach structure [5,10] to obtain a quantitative generalization of Prokhorov's Theorem.

ABSTRACT

We establish a compactness result in approach theory which we apply to obtain a generalization of Prokhorov's Theorem for the continuity approach structure. © 2015 Elsevier B.V. All rights reserved.

E-mail address: ben.berckmoes@uantwerpen.be.

¹ The author is postdoctoral fellow at the Fund for Scientific Research of Flanders (FWO).

2. A compactness result in approach theory

Let X be an approach space with approach system $\mathcal{A} = (\mathcal{A}_x)_{x \in X}$. We first recall some notions related to compactness in X. For more details the reader is referred to [10].

We say that X is *locally countably generated* iff there exists a basis $(\mathcal{B}_x)_{x \in X}$ for \mathcal{A} such that each \mathcal{B}_x is countable.

For $x \in X$, $\phi \in A_x$ and $\epsilon > 0$ we define the ϕ -ball with center x and radius ϵ as the set $B_{\phi}(x, \epsilon) = \{y \in X \mid \phi(y) < \epsilon\}$. More loosely, we also refer to the latter set as a ball with center x or a ball with radius ϵ .

Consider a point $x \in X$, a sequence $(x_n)_n$ in X and $\epsilon > 0$. We say that $(x_n)_n$ is ϵ -convergent to x iff each ball B with center x and radius ϵ contains x_n for all n larger than a certain n_B . We write $x_n \xrightarrow{\epsilon} x$ to indicate that $(x_n)_n$ is ϵ -convergent to x. We define the *limit operator* of $(x_n)_n$ at x as

$$\lambda(x_n \to x) = \inf \left\{ \alpha > 0 \mid x_n \stackrel{\alpha}{\to} x \right\}.$$

We call X sequentially complete iff it holds for each sequence $(x_n)_n$ in X that $\inf_{x \in X} \lambda_A(x_n \to x) = 0$ implies the existence of a point x_0 to which $(x_n)_n$ converges (in the topological coreflection).

Let $A \subset X$ be a set. We say that A is ϵ -relatively sequentially compact iff every sequence in A contains a subsequence which is ϵ -convergent and we define the relative sequential compactness index of A as

$$\chi_{rsc}(A) = \inf \{ \alpha > 0 \mid A \text{ is } \alpha \text{-relatively sequentially compact} \}.$$

Notice that relatively sequentially compact sets (in the topological coreflection) have relative sequential compactness index zero, but that the converse does not necessarily hold.

If $(\Phi = (\phi_x)_x) \in \prod_{x \in X} \mathcal{A}_x$, then a set $B \subset X$ is called a Φ -ball iff there exist $x \in X$ and $\alpha > 0$ such that $B = B_{\phi_x}(x, \alpha)$. We call $A \epsilon$ -relatively compact iff it holds for each $\Phi \in \prod_{x \in X} \mathcal{A}_x$ that A can be covered with finitely many Φ -balls with radius ϵ and we define the relative compactness index of A as

$$\chi_{rc}(A) = \inf\{\alpha > 0 \mid A \text{ is } \alpha \text{-relatively compact}\}.$$

We say that X is ϵ -Lindelöf iff it holds for each $\Phi \in \prod_{x \in X} \mathcal{A}_x$ that X can be covered with countably many Φ -balls with radius ϵ and we define the Lindelöf index of X as

$$\chi_L(X) = \inf \left\{ \alpha > 0 \mid X \text{ is } \alpha \text{-Lindelöf} \right\}.$$

Theorem 2.2, the main result of this section, interconnects the above notions. For its proof we use the following well-known lemma which belongs to the heart of approach theory [10].

Lemma 2.1 (Lowen). Let $\mathcal{D}_{\mathcal{A}}$ be the set of quasi-metrics d on X with the property that $d(x, \cdot) \in \mathcal{A}_x$ for each $x \in X$. Then the assignment of collections

$$\mathcal{B}_{\mathcal{D}_{\mathcal{A},x}} = \{ d(x, \cdot) \mid d \in \mathcal{D}_{\mathcal{A}} \}$$

is a basis for \mathcal{A} .

Theorem 2.2. Let X be locally countably generated. Then, for any set $A \subset X$,

$$\chi_{rsc}(A) \le \chi_{rc}(A) \le \chi_{rsc}(A) + \chi_L(X).$$

Download English Version:

https://daneshyari.com/en/article/4658072

Download Persian Version:

https://daneshyari.com/article/4658072

Daneshyari.com