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We introduce and study a functorial topology on every group G having as a base the 
family of all subgroups of G. Making use of this topology, we obtain an equivalent 
description of the small subgroup generating property introduced by Gould [26]; 
see also Comfort and Gould [6]. This property implies minimal almost periodicity. 
Answering questions of Comfort and Gould [6], we show that every abelian group of 
infinite divisible rank admits a group topology having the small subgroup generating 
property. For unbounded abelian groups of finite divisible rank, we find a new 
necessary condition for the existence of a group topology having the small subgroup 
generating property, and we conjecture that this condition is also sufficient.
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All topological groups considered in this paper are assumed to be Hausdorff.
As usual, Z denotes the group of integers, Z(n) denotes the cyclic group of order n, N denotes the set of 

natural numbers, N+ denotes the set of all positive natural numbers, P denotes the set of all prime numbers 
and c denotes the cardinality of the continuum. We write G ∼= H when groups G and H are isomorphic.

Let G be a group. For m ∈ N, we let

mG = {mg : g ∈ G} and G[m] = {g ∈ G : mg = eG},

where eG is the identity element of G. (When G is abelian, we use 0 instead of eG.) A group G is torsion
if G =

⋃
m∈N+ G[m]. A group G has finite exponent if mG = {eG} for some integer m ≥ 1. The smallest 

integer m with this property is called the exponent (or the order) of G. A group of finite exponent is said 
to be a bounded torsion (or simply bounded) group. For a cardinal σ, we use G(σ) to denote the direct sum 
of σ many copies of the group G. For a subset X of G we use 〈X〉 to denote the smallest subgroup of G
containing X. For x ∈ G we write 〈x〉 instead of 〈{x}〉.

For a subset X of a topological group G, we use X to denote the closure of X in G.
Our terminology and notation follow [10,22].

1. The small subgroup generating property

A subset X of a topological group G topologically generates G provided that 〈X〉 is dense in G, i.e., 
〈X〉 = G.

The following definition was given in [26]; see also [6,27].

Definition 1.1. A topological group G has the small subgroup generating property (shortly, SSGP) if for 
every neighborhood U of the identity eG, there exists a family H of subgroups of G such that 

⋃
H ⊆ U and ⋃

H topologically generates G.

Furthermore, an infinite series of properties SSGP(n) was defined in [6, Definition 3.3].

Definition 1.2. Let G be a topological group.

(a) G has SSGP(0) if G is the trivial group;
(b) for an integer n > 0, G has SSGP(n) provided that, for every neighborhood U of eG, there exists a 

family H of subgroups of G such that 
⋃
H ⊆ U , the closed subgroup N of G topologically generated 

by 
⋃
H is normal and G/N has SSGP(n − 1).

Clearly, the classes SSGP and SSGP(1) coincide.
These notions are important because they are ultimately related to the classical notion of a minimally 

almost periodic group; see (1) below.
According to von Neumann’s terminology [32], a topological group G is called:

(a) minimally almost periodic if every continuous homomorphism G → K to a compact group K is trivial;
(b) maximally almost periodic if continuous homomorphisms G → K into compact groups K separate the 

points of G.

It was proved in [6, Remark 3.4, Theorem 3.5] that

SSGP = SSGP(1) → SSGP(2) → . . . → SSGP(n) → . . . → minimally almost periodic. (1)
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