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In this paper, for an underlying small category U endowed with a Grothendieck 
topology τ , and a linear category a which is graded over U in the sense of 
[13], we define a natural linear topology Tτ on a, which we call the linearized 
topology. Grothendieck categories in (non-commutative) algebraic geometry can 
often be realized as linear sheaf categories over linearized topologies. With the 
eye on deformation theory, it is important to obtain such realizations in which 
the linear category contains a restricted amount of algebraic information. We 
prove several results on the relation between refinement (eliminating both objects, 
and, more surprisingly, morphisms) of the non-linear underlying site (U , τ), and 
refinement of the linearized site (a, Tτ ). These results apply to several incarnations 
of (quasi-coherent) sheaf categories, leading to a description of the infinitesimal 
deformation theory of these categories in the sense of [17] which is entirely controlled 
by the Gerstenhaber deformation theory of the small linear category a, and the 
Grothendieck topology τ on U . Our findings extend results from [17,12,7] and recover 
the examples from [21,20].

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the 1960s, the Grothendieck school revolutionarized algebraic geometry by founding it on the theory of 
abelian categories, see [10], and on topos theory, see the SGA4 volumes, in particular [1]. The setup of scheme 
theory allows arbitrary commutative rings as building blocks, and is further centered around the concepts of 
(quasi-coherent) sheaves and sheaf cohomology. Schemes have underlying topological spaces, built from the 
Zariski topologies on the spectra of commutative rings. With the formulation of the Weil conjectures, it was 
realized that classical topological spaces and sheaf cohomology were insufficient, and it was the introduction 
of the more general étale Grothendieck topology, and corresponding étale cohomology, which eventually led 
to the proofs of the conjectures between 1960 and 1974. On the other hand, in 1962, in his thesis Gabriël 
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developed localization theory in the context of abelian categories, involving, in the case of module categories 
over rings, the concept of a Gabriël filter on a ring. This notion can be recognized as a linear version of 
a Grothendieck topology, on a single object linear category, and can easily be extended to arbitrary small 
linear categories. In the famous Gabriël–Popescu theorem, it was proven that every Grothendieck abelian 
category can be realized as the localization of a module category. This gives Grothendieck categories the 
status of linear versions of Grothendieck topoi, the localizations of presheaf categories of sets which were 
characterized internally by Giraud’s theorem. In both setups, the localizations can be realized as sheaf 
categories, and depend upon the choice of a suitable functor γ : a −→ C from a small (linear) category to a 
Grothendieck topos (or Grothendieck category), giving rise to a (linear) topology T on a and an equivalence 
of categories C ∼= Sh(a, T ). See [11] for a characterization of such functors γ.

Whereas the rings occurring in algebraic geometry are commutative, the theory of abelian categories and 
their localizations is not restricted to the commutative realm, and includes in particular module categories 
over non-commutative rings. For a commutative ring A, the module category Mod(A) is equivalent to the 
category of quasi-coherent sheaves on the spectrum Spec(A), and captures a lot of geometric information. 
With the development of so-called non-commutative algebraic geometry by Artin, Tate, Stafford, Van den 
Bergh and others [3,19], this observation is taken further and Grothendieck abelian categories are them-
selves considered as the main geometric objects. This is motivated by the fact that non-commutative rings 
typically have no well-behaved underlying “spectra” of points, whence one is forced to work in a point-free 
environment. Following this philosophy, one is primordially interested in Grothendieck categories which 
share a lot with the ones occurring in classical algebraic geometry. Examples are provided by deformations 
of commutative rings, with the Weyl algebra deforming the commutative polynomial algebra in two vari-
ables as prime example. Since, for instance, projective geometry involves more general quasi-coherent sheaf 
categories than module categories, in [17], Gerstenhaber’s deformation theory of algebras was extended 
to a deformation theory for abelian categories. This theory allows to capture the important examples of 
non-commutative projective planes, quadrics and P1-bundles over commutative schemes from [21,20], which 
motivated its development. Further, the theory leads to a description of non-commutative deformations of 
schemes in terms of twisted presheaves of non-commutative rings (see [12]).

Let C be a given Grothendieck category over a field k, and suppose we are interested in deformation in 
the direction of an Artin local k-algebra R. According to [17], a deformation is an R-linear Grothendieck 
abelian category which reduces to C upon restriction to k-linear objects. Now suppose we consider our 
favorite representation C ∼= Sh(a, T ) as a sheaf category over a k-linear site (a, T ), corresponding to a 
functor γ : a −→ C. Then, ideally, we would like to realize D as D ∼= Sh(b, S) for an R-linear site (b, S) in 
which:

(A) b is obtained as a linear (i.e., Gerstenhaber type) deformation of a;
(B) S is naturally an “R-linear variant” of T .

In general, both requirements may fail. Whether or not we can realize (A) essentially depends on homological 
conditions involving the objects γ(A) ∈ C, more precisely the vanishing of certain Ext groups between these 
objects. In order to realize (B), we first have to understand what an R-linear variant of a k-linear topology 
means. In a first approach, this could mean “a topology naturally induced by T along the map b −→ a”. 
The drawback of this interpretation is that such a topology does not necessarily have an intrinsic “meaning” 
with respect to b. Let us look at the ideal case where C = Mod(a), the entire module category over a. A basic 
result from [17] states that there is a deformation equivalence

Def lin(a) −→ Defab(Mod(a)) : b −→ Mod(b) (1)
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