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1. Introduction

In 1988, Fujimoto [3] proved Nirenberg’s conjecture that if M is a complete non-flat minimal surface
in R3, then its Gauss map can omit at most 4 points, and there are a number of examples showing that the
bound is sharp (see [12, pp. 72-74]). He [4] also extended that result to the Gauss map of complete minimal
surfaces in R™. After that, in 1990, Mo—Osserman [10] showed an interesting improvement of Fujimoto’s
result by proving that a complete minimal surface in R?® whose Gauss map assumes five values only a
finite number of times has finite total curvature. We note that a complete minimal surface with finite total
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curvature to be called an algebraic minimal surface. After that, Mo [9] extended that result to the complete
minimal surface in R™ (m > 3).

On the other hand, in 1993, M. Ru [13] refined the results of Fujimoto by studying the Gauss map of
minimal surfaces in R™ with ramification. Many results related to this problem were studied (see Jin—Ru [7],
Kawakami-Kobayashi-Miyaoka [8], Ha [5], Dethloff-Ha [1] and Dethloff-Ha—Thoan [2] for examples).

A natural question is whether we may show a relation between of the ramification of the Gauss map and
the total curvature of a complete minimal surface. The main purpose of this article is to give an affirmative
answer for this question. For the purpose of this article, we recall some definitions.

Let z = (zg, -+ ,&m—1) : M — R™ be a (smooth, oriented) minimal surface immersed in R™. Then
M has the structure of a Riemann surface and any local isothermal coordinate (£1,&2) of M gives a local
holomorphic coordinate z = &; + v/—1&. The (generalized) Gauss map of x is defined to be

%.....axmfl)
o0z 0z 7

g: M = Qm_2(C) CP™"H(C),g(z) = (
where
Qm—2(C) = {(wo : -+ : Wy 1)Jwh + -+ + w},_y = 0} CP™H(C).

By the assumption of minimality of M, g is a holomorphic map of M into Q,,—2(C).

One says that g is ramified over a hyperplane H = {(wg : -++ : wy;,—1) € P Y(C) : aqwo + -+ +
p—1Wp—1 = 0} with multiplicity at least e if all the zeros of the function (g, H) := aggo + - + Gm—-19m—1
have orders at least e, where g = (go : - -+ : gm—1). If the image of g omits H, one will say that g is ramified
over H with multiplicity oco.

The main purpose of this article is to prove the following;:

Theorem 1. Let M be a complete minimal surface in R™ and K be a compact subset in M. Assume that
the generalized Gauss map g of M is k-non-degenerate (that is g(M) is contained in a k-dimensional linear
subspace in P™~1(C), but none of lower dimension), 1 < k < m — 1. If there are q hyperplanes {H;}i-, in
N-subgeneral position in P™~1(C), (N > m — 1) such that g is ramified over H; with multiplicity at least
mj on M\ K for each j and

zj:l(lmij)>(k+1)(N§)+(N+1), (1.1)

then M has finite total curvature.
In particular, if {Hj}?:l are in general position in P™~1(C) and

2:(1_7717;1)>m(m+1)7 (12)

then M must have finite total curvature.
When m = 3, we can identify Q;(C) with P!(C). So we can get a better result as the following:
Theorem 2. Let M be a complete minimal surface in R® and q distinct points o/, ..., a? in PY(C). Suppose

that the Gauss map g of M is ramified over a’ with multiplicity at least m; for each j =1,--- ,q outside a
compact subset K of M. Then M has finite total curvature if
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