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In this paper we use Mary Ellen Rudin’s solution of Nikiel’s problem to investigate 
metrizability of certain subsets of compact monotonically normal spaces. We prove 
that if H is a semi-stratifiable space that can be covered by a σ-locally-finite 
collection of closed metrizable subspaces and if H embeds in a monotonically normal 
compact space, then H is metrizable. It follows that if H is a semi-stratifiable space 
with a monotonically normal compactification, then H is metrizable if it satisfies 
any one of the following: H has a σ-locally finite cover by compact subsets; H is a 
σ-discrete space; H is a scattered; H is σ-compact. In addition, a countable space X
has a monotonically normal compactification if and only if X is metrizable. We also 
prove that any semi-stratifiable space with a monotonically normal compactification 
is first-countable and is the union of a family of dense metrizable subspaces. 
Having a monotonically normal compactification is a crucial hypothesis in these 
results because R.W. Heath has given an example of a countable non-metrizable 
stratifiable (and hence monotonically normal) group. We ask whether a first-
countable semi-stratifiable space must be metrizable if it has a monotonically normal 
compactification. This is equivalent to “If X is a first-countable stratifiable space 
with a monotonically normal compactification, must H be metrizable?”

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Research since the 1970s shows that there are close parallels between generalized ordered (GO-) spaces 
and monotonically normal spaces, particularly in the theories of cardinal functions and of paracompactness 
(see [1]). In this paper we investigate the extent to which metrization theory for subsets of compact mono-
tonically normal spaces resembles metrization theory for GO-spaces, i.e., for subspaces of compact linearly 
ordered spaces.

One of the most celebrated results in recent set-theoretic topology is Mary Ellen Rudin’s solution of 
Nikiel’s problem [17] and it is our primary tool in this study. Rudin proved:
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Theorem 1.1. Any compact monotonically normal space is the continuous image of a compact linearly ordered 
topological space.

In Section 4 of this paper we combine ordered space techniques with Theorem 1.1 to prove:

Proposition 1.2. Suppose H is a subspace of a compact monotonically normal space (equivalently, suppose 
H has a monotonically normal compactification). Then:

a) there is a GO-space (Z, τ, �) and a perfect irreducible mapping g from Z onto H with the property that 
no fiber of g contains a jump of (Z, �) (see (4.2));

b) if each point of H is a Gδ-set, then each fiber of the mapping g is metrizable (see (4.3));
c) if H has a Gδ-diagonal, then so does Z (see (4.4)).

We use Proposition 1.2 to study which metrization theorems for GO-spaces can be extended to the larger 
category of spaces with monotonically normal compactifications.

The basic metrization theorem for GO-spaces that might generalize to monotonically normal spaces 
(because it does not mention the order of the GO-space) appears in [15]:

Theorem 1.3. A GO-space X is metrizable if and only if X is semi-stratifiable.

Easy examples show that Theorem 1.3 does not generalize to arbitrary monotonically normal spaces 
because there are many non-metrizable spaces that are stratifiable [2,3,10], and stratifiable spaces are 
exactly the semi-stratifiable monotonically normal spaces. However, because every GO-space has a GO-
compactification (which, of course, is monotonically normal), it is natural to ask the following more 
interesting question:

Question 1. Suppose a space H is semi-stratifiable and has a monotonically normal compactification. Must 
H be metrizable?

As a preliminary step toward that question, in this paper we prove the following result.

Theorem 1.4. Suppose H is a semi-stratifiable space with a monotonically normal compactification. Then:

a) the space H is the union of a family of dense metrizable subspaces (see (3.4));
b) the space H is first-countable (see (3.4)).

In addition, H is metrizable if any one of the following holds:

c) if there is a σ-locally finite cover of H by closed metrizable subsets (see (3.1));
d) if there is a σ-locally-finite cover of H by compact subsets (see 3.2(a));
e) if H =

⋃
{Hn : n ≥ 1} where each Hn is a closed discrete subset1 of H (see 3.2(b));

f) if H is scattered (see 3.2(c));
g) if H is σ-compact (see 3.2(d));
h) if H is countable (see 3.2(e)).

1 In the literature, spaces that are countable unions of closed discrete subspaces are called “σ-discrete spaces.” If a σ-discrete 
space H has a monotonically normal compactification, then it must be stratifiable, so that a theorem of Gruenhage [8] shows that 
H must be at least M1. Our result shows that if a σ-discrete space H has a monotonically normal compactification, then H is even 
more than M1.
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