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1. Introduction

Let G be a compact, connected and simply-connected Lie group, viewed as a G-space via the conju-
gation action. According to the main result of [8], the equivariant K-theory ring K (G) is isomorphic to
Qr(@)/z, the ring of Grothendieck differentials of the complex representation ring of GG over the integers
(in fact, Brylinski-Zhang proved that this is true for 71 (G) being torsion-free). Assuming further that G
is equipped with an involutive automorphism o, the author gave in [9] an explicit description of the ring
structure of the equivariant K R-theory (cf. [2,3] and [6] for definition of K R-theory) KR (G) by drawing
on Brylinski-Zhang’s result, Seymour’s result on the module structure of KR*(G) (cf. [12]) and the notion
of Real equivariant formality. K R{,(G) in general has far more complicated ring structure and, among other
things, is not a ring of Grothendieck differentials, as one would expect from Brylinski-Zhang’s theorem.
This is because in general the algebra generators of the equivariant K R-theory ring do not simply square
to 0.
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In this note, we equip G instead with an anti-involution ag := o¢g o inv. Denoting the (G, og)-space
(G,ag) by G~ for brevity, we compute the ring structure of K R,(G ™) following the idea of [9]. We find that
there exists a derivation of the graded ring K R (pt) ® K R5*(pt) taking values in K R&(G™) ® KRZ*(G™)
(cf. Proposition 3.5) and that any element in the image of the derivation squares to 0 (see Propositions 3.3,
3.5 and 4.8(1), and compare with [9, Theorem 4.30, Proposition 4.31]). In particular,

Theorem 1.1. If G does not have any Real representation of complex type with respect to og, then the
derivation in Proposition 3.5 induces the following ring isomorphism

KRG(G™) = QR (pt) /KR (pt)

Hence an anti-involution is the ‘right’ involution needed to generalize Brylinski—Zhang’s result in the
context of K R-theory. As a by-product, we also obtain the following

Corollary 1.2. If G is a compact connected Real Lie group (not necessarily simply-connected) and X a
compact Real G-space, then for any x in KRL(X) or KRag(X), 22 =0.

Note that graded commutativity only implies that 2 is 2-torsion.

Throughout this note, G is a compact, connected and simply-connected Lie group unless otherwise
specified. We sometimes omit the notation for the involution when it is clear from the context that a Real
structure is implicitly assumed.

2. Background

In this section, we recall some relevant definitions and results from [8] and [9] needed in this note. We
refer the reader to [2,3] and [6] for the basic definition of (equivariant) K R-theory, which we shall omit here.

Definition 2.1. Let G be a compact Lie group equipped with an involutive automorphism og, i.e. a Real
compact Lie group, and X a finite CW-complex equipped with an involution.

(1) (ct. [9, Proposition 2.29]) Let ¢ : KR&(X) — K&(X) be the complexification map which forgets the
Real structure of Real vector bundles, and r : K5 (X) = KR§(X) be the realification map defined by

[E] — [E@® ool Bl

where o, means twisting the original G-action on E by o¢.

(2) (cf. [9, Definitions 2.1 and 2.5]) Let § : R(G) — K ~!(G) be the derivation of R(G) taking values in the
R(G)-module K~1(G) (the module structure is realized by the augmentation homomorphism), where
0(p) is represented by the complex of vector bundles

0>GXRXV >GxRxV =0,

(g9,t,v) — (g,t,—tp(g)v) if t > 0,
(g,t,v) — (g,t,tv) if t <O0.

We define ¢ : R(G) — K;'(G) similarly. dg(p) is represented by the same complex of vector bundles
where G acts on G x R x V by go - (g1,£,v) = (gog195 "+ t, pv (90)v)-

(3) Let o, be the class of the standard representation of U(n) in R(U(n)). Let T be the standard maximal
torus of U(n). Let og be the complex conjugation on U(n), T, U(n)/T or U(co). Let oy be the symplectic
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