Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Equicontinuity on semi-locally connected spaces $\stackrel{\Leftrightarrow}{\sim}$

C.A. Morales

Instituto de Matematica, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, Brazil

ARTICLE INFO

Article history: Received 3 September 2015 Received in revised form 15 November 2015 Accepted 30 November 2015 Available online 7 December 2015

MSC: primary 54H20 secondary 49J53

Keywords: Distal Equicontinuous Metric space

1. Introduction

A homeomorphism $f: X \to X$ of a compact metric space X is *distal* if

$$\inf_{n\in\mathbb{Z}} d(f^n(x), f^n(y)) > 0$$

for all distinct points $x, y \in X$. The distal homeomorphisms were introduced by Hilbert as a generalization of rigid group of motions [3,6].

We can generalize this definition by replacing y above by a compact subset K (not containing x of course); and $d(f^n(x), f^n(y))$ by $dist(f^n(x), f^n(K))$ where

$$dist(p,B) = \inf\{d(p,b): b) \in B\}, \qquad \forall p \in X, B \subset X.$$

 $\label{eq:http://dx.doi.org/10.1016/j.topol.2015.11.011 0166-8641/© 2015$ Elsevier B.V. All rights reserved.

ABSTRACT

We prove that a homeomorphism of a semi-locally connected compact metric space is equicontinuous if and only if it satisfies the following property (CW): the distance between the iterates of a given point and a given subcontinuum not containing that point is bounded away from zero. This equivalence is false for general compact metric spaces. We also prove that a homeomorphism with the property (CW) satisfies that the set of automorphic points contains those points where the space is not semi-locally connected.

@ 2015 Elsevier B.V. All rights reserved.

^{*} Partially supported by MATHAMSUB 15 MATH05-ERGOPTIM, Ergodic Optimization of Lyapunov Exponents. E-mail address: morales@impa.br.

However, the resulting generalization turns out to be equivalent to equicontinuity (by Lemma 2.5 below). Recall that f is equicontinuous if for every $\epsilon > 0$ there is $\delta > 0$ such that $d(f^n(x), f^n(y)) \leq \epsilon$ whenever $x, y \in X$ satisfy $d(x, y) \leq \delta$.

But the question arises: What if we replace y by another type of compact subsets like, for instance, a subcontinuum C not containing x? Recall that a *subcontinuum* is a nonempty compact connected subset of X. The continuum theory [12] has been considered elsewhere in the study of dynamical systems [1,10]. The question suggests the study of homeomorphisms $f: X \to X$ with the following property:

(CW) $\inf_{n \in \mathbb{Z}} dist(f^n(x), f^n(C)) > 0$ for every $x \in X$ and every subcontinuum C of X with $x \notin C$.

In our first result we will give topological conditions characterizing equicontinuity in terms of this property. For this we shall use the following definition by Whyburn [14] (see also Jones [9]).

Definition 1.1. We say that a metric space X is *semi-locally connected at* $p \in X$ if for every open neighborhood U of p there is an open neighborhood $V \subset U$ of p such that $X \setminus U$ is contained in the union of finitely many connected components of $X \setminus V$. We denote by X^{slc} the set of points at which X is semi-locally connected. We say that X is *semi-locally connected* if $X^{slc} = X$.

The class of semi-locally connected spaces is broad enough to include properly the locally connected ones (like manifolds or more structured spaces). In these spaces we shall obtain the following equivalence.

Theorem 1.2. A homeomorphism of a semi-locally connected compact metric space is equicontinuous if and only if it satisfies (CW).

In particular, since there are distal homeomorphisms on the two-disk which are not equicontinuous (e.g. Chapter 5 in [3]), and the two-disk is locally connected, we obtain the following corollary.

Corollary 1.3. There are distal homeomorphisms which do not satisfy (CW).

Notice that (CW) is also equivalent to equicontinuity on certain non-semi-locally connected spaces like the totally disconnected ones (see Corollary 1.9 in [4]). But in general (CW) is not equivalent to equicontinuity as in the following counterexample.

Example 1.4. Define $X = \{re^{i\theta} \in \mathbb{R}^2 : 0 \le \theta \le 2\pi, r \in C\}$ where C is the ternary Cantor set in [1,2]. Then, the map $f: X \to X$ defined by $f(re^{i\theta}) = re^{i(\theta+2\pi r)}$ is a homeomorphism of X. This homeomorphism is an irrational rotation on the circle with radius r for irrational r, while it is a periodic rotation for rational r. Using this we can see that f is not equicontinuous. Since every subcontinuum of X is contained in one of the circles $\{re^{i\theta}: 0 \le \theta \le 2\pi\}$ $(r \in C)$ in which the action is an isometry, we obtain that f satisfies (CW).

This counterexample motivates the search of similarities between (CW) and the equicontinuous property. For instance, since every equicontinuous homeomorphism is uniformly rigid [7], it is natural to ask if every homeomorphism satisfying (CW) is uniformly rigid (or at least rigid). Another question comes from the following definition by Veech [13] (see also [5]):

Definition 1.5. If $f: X \to X$ is a homeomorphism of a compact metric space X, a point $x \in X$ is called almost automorphic if for every sequence $n_i \in \mathbb{Z}$ with $f^{n_i}(x) \to y$ for some $y \in X$ it holds that $f^{-n_i}(y) \to x$. We denote by A(f) the set of almost automorphic points of f.

Theorem 3 in [5] implies that every equicontinuous homeomorphism $f : X \to X$ of a compact metric space X satisfies A(f) = X. Is this property true (or at least $A(f) \neq \emptyset$) for every homeomorphisms f

Download English Version:

https://daneshyari.com/en/article/4658130

Download Persian Version:

https://daneshyari.com/article/4658130

Daneshyari.com