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A knot shadow is a diagram with all crossing information missing. We cannot 
determine the original knot from a knot shadow in general. In this paper, we 
investigate properties (unknotting number, genus, braid index, etc.) of the original 
knot from a knot shadow.
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1. Introduction

We consider oriented knots in R3 and do not distinguish between a knot and its knot type so long as no 
confusion occurs. For the standard definitions and results of knots and links, we refer to [2]. We say that 
a diagram of a knot K with all crossing information missing is a knot shadow S. Then, we call S a knot 
shadow of K and a crossing without crossing information a precrossing. We remark that a knot shadow is 
usually called a knot projection. Here, we consider a projection to be a shadow in this paper. A diagram 
D is obtained from a knot shadow S if D with all crossing information missing is S. We start from the 
following question.

Question 1. Is the knot shadow S the projection of a diagram of the knot K, where S and K are pictured in 
Fig. 1?

We can answer this question if we check all knots represented by diagrams obtained from S. However, 
it is difficult to check such all knots as the number of the precrossings of S increases. Now, therefore, we 
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Fig. 1. Knot shadow.

investigate scannable properties (unknotting number, genus, braid index etc.) of the original knot from a 
knot shadow. We present an answer of this question in Section 3. We remark here that DNA knots originally 
inspired this research, namely we cannot determine over/under information at crossings in some photos of 
DNA knots.

For a knot shadow S we say that

KS = {K | K has a knot shadow S}.

It is well-known that for any knot shadow S, KS contains a trivial knot. We define the following:

u(S) = max{u(K) | K ∈ KS},

c(S) = max{c(K) | K ∈ KS},

g(S) = max{g(K) | K ∈ KS},

br(S) = max{br(K) | K ∈ KS},

b(S) = max{b(K) | K ∈ KS},

σ(S) = max{|σ(K)| | K ∈ KS},

s(S) = max{|s(K)| | K ∈ KS}

where u(K) is the unknotting number of K, c(K) is the crossing number of K, g(K) is the genus of K, br(K)
is the braid index of K, b(K) is the bridge number of K, σ(K) is the signature of K, and s(K) means the 
Rasmussen invariant of K defined in [14]. Then we call u(S) the unknotting number of S, c(S) the crossing 
number of S, g(S) the genus of S, br(S) the braid index of S, b(S) the bridge number of S, σ(S) the signature 
of S, and s(S) the Rasmussen invariant of S. Since the signature and the Rasmussen invariant of a knot 
take nonnegative integer, we take absolute values of them. Then, let K be the mirror image of a knot K,

σ(K) = −σ(K), s(K) = −s(K).

Next, we define

umin(S) = min{u(K) | K ∈ KS}.

Immediately, we see that for any knot shadow S, umin(S) = 0. Therefore, we do not define the minimum 
number of their invariants for knot shadows.

We investigate u(S) in Section 3, c(S) in Section 4.1, g(S) in Section 4.2, and br(S), b(S), σ(S) and s(S)
in Section 4.3.

We introduce related topics. We denote the set of all knot shadows of K by PROJ(K). A knot K1 is a 
minor of K2, denoted by K1 ≤ K2 (K2 ≥ K1), if PROJ(K1) ⊃ PROJ(K2) in [16]. We denote the set of all 
knots by K. The following holds.
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