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Under p = c, we show that it is possible to endow the additive group of the real line 
with a Hausdorff group topology that makes its square countably compact but not 
its cube.
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1. Introduction

1.1. Some history

Comfort and Ross [6] showed that the product of pseudocompact groups is pseudocompact. This is not 
true in general for pseudocompact spaces. There is even a countably compact space whose square is not 
pseudocompact (see [8]). This motivated the question whether the same would be true for countably compact 
groups.
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The first solution to this problem was obtained by van Douwen [7]. He showed under Martin’s Axiom 
the existence of two countably compact groups whose product is not countably compact. Using a different 
technique, Hart and van Mill [10] constructed under Martin’s Axiom restricted to countable posets a count-
ably compact group whose square is not countably compact. Ginsburg and Saks [9] showed that if the 2cth
power of a topological space X is countably compact, then every power of X is countably compact.

Comfort [5] asked if there exists, for every (not necessarily infinite) cardinal number α ≥ 2c, a topological 
group G such that Gγ is countably compact for all cardinals γ < α, but Gα is not countably compact. 
Tomita [11] showed it is consistent with ZFC that each cardinal not greater than 2c answers Comfort’s 
question affirmatively.

Boero and Tomita [2] showed under p = c that it is possible to endow the free Abelian group of size 
continuum with a group topology that makes its square countably compact. In this article, we show under 
p = c that it is possible to endow the additive group of the real line with a Hausdorff group topology that 
makes its square countably compact but not its cube.

1.2. Basic results, notation and terminology

In what follows, all group topologies are assumed to be Hausdorff. We recall that a topological space X
is countably compact if every infinite subset of X has an accumulation point.

The following definition was introduced in [1] and is closely related to countable compactness.

Definition 1.1. Let p be a free ultrafilter on ω and let {xn : n ∈ ω} be a sequence in a topological space X. 
We say that x ∈ X is a p-limit point of {xn : n ∈ ω} if, for every neighborhood U of x, {n ∈ ω : xn ∈ U} ∈ p. 
In this case, we write x = p − lim{xn : n ∈ ω}.

The set of all free ultrafilters on ω will be denoted by ω∗. It is not difficult to show that a topological 
space X is countably compact if, and only if, each sequence in X has a p-limit point, for some p ∈ ω∗.

Proposition 1.2. If p ∈ ω∗ and {Xi : i ∈ I} is a family of topological spaces, then (yi)i∈I ∈
∏

i∈I Xi is a 
p-limit point of {(xn

i )i∈I : n ∈ ω} ⊂
∏

i∈I Xi if, and only if, yi = p − lim{xn
i : n ∈ ω} for every i ∈ I.

Proposition 1.3. Let G be a topological group and p ∈ ω∗.

(1) If {xn : n ∈ ω} and {yn : n ∈ ω} are sequences in G and x, y ∈ G are such that x = p − lim{xn : n ∈ ω}
and y = p − lim{yn : n ∈ ω}, then x + y = p − lim{xn + yn : n ∈ ω};

(2) If {xn : n ∈ ω} is a sequence in G and x ∈ G is such that x = p − lim{xn : n ∈ ω}, then −x =
p − lim{−xn : n ∈ ω}.

If A is a set, then [A]ω = {X ⊂ A : |X| = ω} and [A]<ω = {X ⊂ A : |X| < ω}.
A pseudointersection of a family G of sets is an infinite set that is almost contained in every member of G. 

We say that a family G of infinite sets has the strong finite intersection property (SFIP, for short) if every 
finite subfamily of G has infinite intersection. The pseudointersection number p is the smallest cardinality 
of any G ∈ [ω]ω with SFIP but with no pseudointersection.

We denote the set of positive natural numbers by N, the integers by Z, the rationals by Q and the 
reals by R. The unit circle group T will be identified with the metric group (R/Z, δ) where δ is given by 
δ(x +Z, y +Z) = min{|x − y + a| : a ∈ Z} for every x, y ∈ R. Given a subset A of T, we will denote by δ(A)
the diameter of A with respect to the metric δ.

The set of all non-empty open arcs of T will be denoted by B. If A ∈ B \ {T} and n ∈ N, we will denote 
by A/n the open arc of T centered at the middle point of A with length δ(A)/n.
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