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It is a result of A. Bouziad that every regular, first countable, totally imperfect 
space with no isolated points is not F in-trivial. We prove that every regular totally 
imperfect space containing a copy of the rational numbers is not Fin-trivial in a 
strong sense. Our result generalizes that of Bouziad to a larger class of spaces and 
gives a strengthened conclusion. As a corollary we conclude that various splitting 
topologies on the space of continuous real-valued functions defined on a metric space 
need not coincide.
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1. Introduction

We denote the collections of closed subsets, compact subsets, and finite subsets of a topological space 
X by F (X), K(X), and Fin(X), respectively. When the space X is understood we will often drop the 
symbol (X) and write, for example, Fin instead of Fin(X). Two well studied topologies on F are the 
upper-Kuratowski topology and the compact-open topology, which we denote by T (uk) and τco, respectively. 
Let H ⊆ F . A space is called H-trivial [16] provided that T (uk)|H = τco|H , where T (uk)|H and τco|H
denote the subspace topologies on H induced by T (uk) and τco respectively. The F -trivial spaces are also 
known as consonant spaces, which is the name given in [7] where the study of the coincidence of T (uk) and 
τco for general topological spaces is initiated. A topological space is said to be perfect provided that it is 
nonempty, Hausdorff, compact, and has no isolated points. The space X is called totally imperfect provided 
that it has no perfect subspace. Using the fact that compact Hausdorff spaces are regular, one can use a 
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standard Cantor tree construction to show that every perfect space has cardinality at least that of the real 
numbers. By ω we mean the set of non-negative integers.

In [16] the first non-consonant metric space was constructed and it was asked whether there is a non-
consonant separable metric space. Examples of non-consonant separable metric spaces and first countable 
spaces, in particular the rational numbers Q with their usual topology, soon followed [1,4,3], and [5]. The 
result of greatest generality in this direction is:

Proposition 1. ([3, Corollary 3.8]) Every regular first countable space without isolated points, all compact 
subsets of which are countable, is not Fin-trivial (and hence, non-consonant).

It should be noted that even though regularity is not explicitly mentioned in the result of Bouziad, all 
spaces in the section of the paper where the result appears are assumed to be regular. Indeed, the result 
of Bouziad relies on the theory of Prohorov spaces which are sometimes (see, for example, the survey [17]) 
assumed to be regular. The author has attempted with no success to determine whether the assumption of 
Hausdorffness is sufficient for Bouzaid’s result. In [13] and [9] two notions weaker than consonance called 
infraconsonant and compact-family-splittable, respectively, are considered. The notions of infraconsonant 
and compact-family-splittable are closely tied to the joint continuity and separate continuity of the group 
operations on C(X) with the Isbell topology, respectively. The following is a corollary of Theorem 14 of this 
paper and improves Proposition 1:

Corollary 2. If X is a regular totally imperfect space with no isolated points that contains a copy of Q, then 
X is neither Fin-trivial nor compact-family-splittable.

We now show how Proposition 1 follows from Corollary 2. Suppose X satisfies the hypothesis of Propo-
sition 1. It is enough to show that X also satisfies the hypothesis of Corollary 2. It is a routine exercise to 
verify that since X is regular and first countable with no nonisolated points, then X must contain a copy 
of Q. It remains to show that X is totally imperfect. Suppose A ⊆ X is compact. Since A is countable and 
every perfect space is uncountable, A must have an isolated point. Thus, X is totally imperfect.

We give an example of space that satisfies the hypothesis of Corollary 2, but not the hypothesis of 
Proposition 1. Let {Bn}n∈ω be a countable base of nonempty open sets for Q. Let β(Q) stand for the 
Stone–Cech compactification of Q. For each n ∈ ω pick xn ∈ β(Q) \ Q so that xn ∈ clβ(Q)(Bn). Let 
X = Q ∪ {xn: n ∈ ω}. Since β(Q) is compact and Hausdorff, X is completely regular. Since X is countable 
and every perfect space is uncountable, X is totally imperfect. So, X satisfies the hypothesis of Corollary 2. 
However, X is not first countable at any point in X \ Q. By way of contradiction, assume that x ∈ X \ Q
has countable local base of open sets. Since the rationals are dense in X, there is sequence (qn)∞n=1 on Q
such that lim qn = x. Since {qn: n ∈ ω} is closed and discrete in Q, there is a continuous bounded function 
f : Q → R so that f(qn) = 0 when n is even and f(qn) = 1 when n is odd. Any continuous bounded function 
Q into R has a bounded continuous extension to β(Q), and hence X. So, lim (f∗(qn))n∈ω = f∗(x), where 
f∗ is the continuous extension of f , which is impossible by the way we defined f . Finally, notice that Q is 
neither open nor closed in X. So, Proposition 1 cannot be combined with any of the usual theorems about 
open or closed subspaces of consonant or Fin-trivial spaces to conclude that X is not Fin-trivial or even 
non-consonant.

2. Preliminaries

All filters considered are nondegenerate, that is, they do not contain the empty set. Given two families 
of sets F and G we say that F is coarser than G (or, G is finer than F) and write F ≤ G provided that for 
every F ∈ F there is a G ∈ G such that G ⊆ F , we will apply this notation to filters and topologies. For a 
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