

Separating sets by cliquish functions

Marcin Kowalewski ^{a,*}, Aleksander Maliszewski ^b

^a Mathematics Department, Casimir the Great University, pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland
^b Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

ARTICLE INFO

Article history: Received 27 October 2014 Received in revised form 3 April 2015 Accepted 5 April 2015 Available online 20 May 2015

MSC: primary 26A21, 54C30 secondary 26A15, 54C08

Keywords: Cliquishness Urysohn lemma Separating sets

1. Introduction

ABSTRACT

In this paper we characterize the pairs $\langle A_0, A_1 \rangle$ of disjoint subsets of topological space X which can be separated by a cliquish function.

© 2015 Elsevier B.V. All rights reserved.

The problem of separating sets by functions is closely related to the classical Urysohn Lemma which states: if X is a T_4 -space and the sets $A_0, A_1 \subset X$ are disjoint and closed, then there exists a continuous function $f: X \to \mathbb{R}$ such that f = 0 on A_0 and f = 1 on A_1 , and if moreover A_0 and A_1 are G_δ sets, then we can require that $f(x) \in (0, 1)$ for each $x \in X \setminus (A_0 \cup A_1)$. In [1] A. Maliszewski replaced the continuity of the function f by Darboux property. More precisely, he examined when, given two sets $A_0, A_1 \subset \mathbb{R}$, we can find a Darboux function f such that f = 0 on A_0 and f = 1 on A_1 . He called this "the classical separation property". Moreover he investigated the pairs $\langle A^-, A^+ \rangle$ for which there exists a Darboux function f such that f < 0 on A^- and f > 0 on A^+ and he called this "a new separation property". Similar problems for the family of quasi-continuous functions were examined by M. Kowalewski in [2] and for the family Darboux quasi-continuous functions by M. Kowalewski and A. Maliszewski in [3]. In 2013 P. Szczuka solved the problem of separating sets by an upper semicontinuous function and by a Darboux upper semicontinuous function [4]. In this paper we deal with the family of cliquish functions.

* Corresponding author.

E-mail addresses: MarcinKo@ukw.edu.pl (M. Kowalewski), AMal@p.lodz.pl (A. Maliszewski).

2. Preliminaries

The letters \mathbb{N} and \mathbb{R} denote the set of positive integers and the real line, respectively. Let X be a topological space. For each set $A \subset X$, we use the symbols cl A, int A, and bd A to denote the closure, the interior, and the boundary of A, respectively. Let $f: X \to \mathbb{R}$. For each $a \in \mathbb{R}$ we define

$$[f=a] \stackrel{\mathrm{df}}{=} \{x \in X ; f(x) = a\}.$$

Similarly we define the sets [f > a] and [f < a]. By $\mathcal{C}(f)$ we denote the set of all continuity points of f. Let $A, B \subset X, A \cap B \neq \emptyset$ and $f: A \to \mathbb{R}$. The oscillation of f on the set B we call the number

$$\omega(f, B) \stackrel{\text{df}}{=} \sup\{|f(x) - f(t)|; x, t \in A \cap B\}.$$

The oscillation of f at a point $x \in A$ we call the number

$$\omega(f, x) \stackrel{\text{di}}{=} \inf \{ \omega(f, U) ; U \text{ is open neighborhood of } x \}.$$

We say that f is cliquish [5] at a point $x \in X$, if for each open neighborhood V of x and each $\varepsilon > 0$, there is a nonempty open set $G \subset V$ such that $\omega(f, G) < \varepsilon$. If f is cliquish at each point $x \in X$, then we say that f is cliquish. By $\mathcal{C}_q(f)$ we denote the set of all cliquishness points of f.

Theorem 2.1. ([5, Thm. 4]) The points of the discontinuity of every cliquish function constitute a set of Baire's first category.

3. Classical separation property

Theorem 3.1. Let A_0 and A_1 be subsets of a topological space X. The following conditions are equivalent:

i) there is a cliquish function $f: X \to \mathbb{R}$ such that

$$A_0 = [f = 0]$$
 and $A_1 = [f = 1];$ (1)

ii) $A_0 \cap A_1 = \emptyset$, the sets $\operatorname{cl} A_0 \setminus A_0$, $\operatorname{cl} A_1 \setminus A_1$ are meagre and $\operatorname{cl} A_0 \cap \operatorname{cl} A_1$ is nowhere dense in X.

Proof. i) \Rightarrow ii). Let $f: X \to \mathbb{R}$ be a cliquish function satisfies (1). Observe that $A_0 = f^{-1}(0)$ and $A_1 = f^{-1}(1)$, so $A_0 \cap A_1 = \emptyset$.

Put $x \in \operatorname{cl} A_0 \setminus A_0$ and define the set $V \stackrel{\mathrm{df}}{=} \mathbb{R} \setminus \{0\}$. Since $x \notin A_0$, so $x \in f^{-1}(V)$. On the other side

$$x \in \operatorname{cl} A_0 \subset \operatorname{cl} f^{-1}(0) = X \setminus \operatorname{int} (X \setminus f^{-1}(0)) = X \setminus \operatorname{int} f^{-1}(V).$$

So $x \notin \operatorname{int} f^{-1}(V)$ and then $x \notin \mathcal{C}(f)$. This proves that $\operatorname{cl} A_0 \setminus A_0$ is subset of $X \setminus \mathcal{C}(f)$ which is meagre. Similarly we can proof that the set $\operatorname{cl} A_1 \setminus A_1$ is meagre.

Now suppose that there exists $x \in int(cl A_0 \cap cl A_1)$. Since $x \in \mathcal{C}_q(f)$, so there exists nonempty open set $V \subset int(cl A_0 \cap cl A_1)$, such that $\omega(f, V) < 1$. Then

$$V \cap \operatorname{cl} A_0 \neq \emptyset \neq V \cap \operatorname{cl} A_1 \quad \Rightarrow \quad V \cap A_0 \neq \emptyset \neq V \cap A_1.$$

But then $\omega(f, V) \ge 1$ contrary to assumption. So the set $\operatorname{cl} A_0 \cap \operatorname{cl} A_1$ is nowhere dense.

Download English Version:

https://daneshyari.com/en/article/4658272

Download Persian Version:

https://daneshyari.com/article/4658272

Daneshyari.com