

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A note on semitopological groups and paratopological groups

Liang-Xue Peng

College of Applied Science, Beijing University of Technology, Beijing 100124, China

ARTICLE INFO

Article history: Received 13 January 2014 Received in revised form 3 June 2015 Accepted 5 June 2015 Available online 12 June 2015

MSC:

primary 54H99, 54D10 secondary 54B30, 54C10

Keywords: Semitopological groups Paratopological groups T_2 -reflection Symmetry number Index of regularity ω -cellular

ABSTRACT

We give a description of the T_2 -reflection of a semitopological group G as the quotient of G with respect to a certain subgroup of G. This answers an open problem of M. Tkachenko (Problem 4.1 which appears in [6]). We also show that if G is an ω -cellular regular ω -balanced paratopological group then the following conditions are equivalent:

- (1) $Sm(G) \leq \omega$;
- (2) $Hs(G) \leq \omega;$
- (3) $Ir(G) \leq \omega$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recall that a topological group G is a group with a (Hausdorff) topology such that the product mapping of $G \times G$ into G is jointly continuous and the inverse mapping of G onto itself associating x^{-1} with $x \in G$ is continuous. A paratopological group is a group with a topology such that the multiplication is jointly continuous. However, there exists a paratopological group which is not a topological group; Sorgenfrey line [3, Example 1.2.2] is such an example. Semitopological groups are groups with a topology in which the left and right translations are continuous. The following definition appears in [6]. A class C of spaces is a PS-class if it contains arbitrary products of its elements, is hereditary with respect to taking subspaces, and contains a one-point space. Let C be a PS-class of spaces and let $\varphi_G^C: G \to H$ be a continuous surjective homomorphism of semitopological groups. The pair (H, φ_G^C) is called a C-reflection of G if $H \in C$ and for every continuous mapping $f: G \to X$ to a space $X \in C$, there exists a continuous mapping $h: H \to X$ such that $f = h \circ \varphi_G^C$ [6].

[†] Research supported by the National Natural Science Foundation of China (Grant No. 11271036). E-mail address: pengliangxue@bjut.edu.cn.

Abusing terminology we will usually refer to $H = \varphi_G^{\mathcal{C}}(G)$ as a \mathcal{C} -reflection of G. For a semitopological group G, M. Tkachenko [6] stated the existence of T_i -reflection $T_i(G)$ for $i \in \{0, 1, 2, 3\}$, as well as the regular reflection Reg(G) and Tychonoff reflections Tych(G), respectively. In [6], Tkachenko also gave a description of the T_i -reflection $T_i(G)$, for i = 0, 1, of a semitopological group G as the quotient of G with respect to a certain subgroup of G defined in internal terms. The following problem appears in [6, Problem 4.1].

Problem. ([6, Problem 4.1]) Describe in internal terms the kernel of the canonical homomorphism $\varphi_{G,2}$ of a semitopological group G onto $T_2(G)$.

The above problem is answered in this note.

Recall that a space X is called ω -cellular [1] if every family γ consisting of G_{δ} -sets in X contains a subfamily γ_0 such that $\overline{\bigcup \gamma_0} = \overline{\bigcup \gamma}$ and $|\gamma_0| \leq \omega$. Recall that the Hausdorff number of a Hausdorff semitopological group G with the identity e, denoted by Hs(G), is the minimum cardinal number κ such that for every neighbourhood U of e in G, there exists a family γ of neighbourhoods of e such that $\bigcap \{VV^{-1}:V\in\gamma\}\subset U$ and $|\gamma|\leq \kappa$ [7]. The symmetry number [5] of a T_1 semitopological group G with the identity e, denoted by Sm(G), is the minimum cardinal number κ such that for every neighbourhood U of e in G, there exists a family γ of neighbourhoods of e such that $\bigcap \{V^{-1}:V\in\gamma\}\subset U$ and $|\gamma|\leq \kappa$. The index of regularity of a regular semitopological group G with the neutral element e, denoted by Ir(G), is the minimum cardinal number κ such that for every neighbourhood U of e in G, one can find a neighbourhood V of e and a family γ of neighbourhoods of e in G such that $\bigcap \{VW^{-1}:W\in\gamma\}\subset U$ and $|\gamma|\leq \kappa$ [7]. If G is a regular paratopological group, then it is obvious that $Sm(G)\leq Hs(G)\leq Ir(G)$. In [5], there is an open problem that find conditions under which a Hausdorff paratopological group G satisfies Sm(G)=Hs(G). In this note, we show that if G is an ω -cellular regular ω -balanced paratopological group then the following conditions are equivalent:

- (1) $Sm(G) \leq \omega$;
- (2) $Hs(G) \leq \omega$;
- (3) $Ir(G) \leq \omega$.

To get the above conclusion, we need the following result (Theorem 9). Let G be an ω -cellular regular paratopological group with the neutral element e and let \mathcal{V} be a countable family of open neighbourhoods of e in G. If G is ω -balanced and $Sm(G) \leq \omega$, then there exists an open continuous homomorphism $p: G \to K$ of G onto a first-countable regular paratopological group H such that $ker(p) \subset \bigcap \mathcal{V}$, $\overline{U} = p^{-1}(\overline{p(U)})$ for each $U \in \mathcal{V}$, and for each $U \in \mathcal{V}$ there is an open neighbourhood W_U of the neutral element e_K in K such that $p^{-1}(W_U) \subset U$.

The set of all positive integers is denoted by \mathbb{N} and ω is $\mathbb{N} \cup \{0\}$. In notation and terminology we will follow [1] and [3]. Every regular topological space is a T_1 -space in this article.

2. Main results

In order to describe in internal terms the kernel of the canonical homomorphism $\varphi_{G,2}$ of a semitopological group G onto the T_2 -reflection $T_2(G)$ of G, we need the following lemmas.

Lemma 1. Let G, K be semitopological groups. If $f: G \to K$ is a continuous homomorphism such that |f(G)| > 1 and K is a Hausdorff semitopological group, then there is an open neighbourhood V of the neutral element e_G in G such that $VV^{-1} \neq G$.

Proof. Let $p, q \in f(G)$ such that $p \neq q$. Since K is a Hausdorff space, there are open sets O_p and O_q of K such that $O_p \cap O_q = \emptyset$ and $p \in O_p$, $q \in O_q$. Let $x, y \in G$ such that f(x) = p and f(y) = q. Thus $x \neq y$.

Download English Version:

https://daneshyari.com/en/article/4658285

Download Persian Version:

https://daneshyari.com/article/4658285

Daneshyari.com