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Being motivated by the study of the space Cc(X) of all continuous real-valued 
functions on a Tychonoff space X with the compact–open topology, we introduced 
in [16] the concepts of a cp-network and a cn-network (at a point x) in X. In the 
present paper we describe the topology of X admitting a countable cp- or cn-network 
at a point x ∈ X. This description applies to provide new results about the 
strong Pytkeev property, already well recognized and applicable concept originally 
introduced by Tsaban and Zdomskyy [44]. We show that a Baire topological group 
G is metrizable if and only if G has the strong Pytkeev property. We prove also 
that a topological group G has a countable cp-network if and only if G is separable 
and has a countable cp-network at the unit. As an application we show, among the 
others, that the space D′(Ω) of distributions over open Ω ⊆ Rn has a countable 
cp-network, which essentially improves the well known fact stating that D′(Ω) has 
countable tightness. We show that, if X is an MKω-space, then the free topological 
group F (X) and the free locally convex space L(X) have a countable cp-network. 
We prove that a topological vector space E is p-normed (for some 0 < p ≤ 1) if and 
only if E is Fréchet–Urysohn and admits a fundamental sequence of bounded sets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All topological spaces are assumed to be Hausdorff. Various topological properties generalizing metriz-
ability have been studied intensively by topologists and analysts, especially like first countability, Fréchet–
Urysohness, sequentiality and countable tightness (see [9,25]). It is well-known that

metric =⇒ first
countable =⇒ Fréchet–

Urysohn =⇒ sequential =⇒ countable
tight ,

and none of these implications can be reversed.

* Corresponding author.
E-mail addresses: saak@math.bgu.ac.il (S. Gabriyelyan), kakol@amu.edu.pl (J. Ka̧kol).

1 Partially supported by Israel Science Foundation grant 1/12.
2 Supported by Generalitat Valenciana, Conselleria d’Educació, Cultura i Esport, Spain, Grant PROMETEO/2013/058.

http://dx.doi.org/10.1016/j.topol.2015.04.015
0166-8641/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2015.04.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:saak@math.bgu.ac.il
mailto:kakol@amu.edu.pl
http://dx.doi.org/10.1016/j.topol.2015.04.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2015.04.015&domain=pdf


60 S. Gabriyelyan, J. Ka̧kol / Topology and its Applications 190 (2015) 59–73

One of the most immediate extensions of the class of separable metrizable spaces are the classes of cosmic 
and ℵ0-spaces in sense of Michael [30].

Definition 1.1. ([30]) A topological space X is called

• cosmic, if X is a regular space with a countable network (a family N of subsets of X is called a network
in X if, whenever x ∈ U with U open in X, then x ∈ N ⊆ U for some N ∈ N );

• an ℵ0-space, if X is a regular space with a countable k-network (a family N of subsets of X is called a 
k-network in X if, whenever K ⊆ U with K compact and U open in X, then K ⊆

⋃
F ⊆ U for some 

finite family F ⊆ N ).

These classes of topological spaces were intensively studied in [20,23,30] and [31].
Having in mind the Nagata–Smirnov metrization theorem, Okuyama [38] and O’Meara [34] introduced 

the classes of σ-spaces and ℵ-spaces, respectively.

Definition 1.2. A topological space X is called

• ([38]) a σ-space if X is regular and has a σ-locally finite network;
• ([34]) an ℵ-space if X is regular and has a σ-locally finite k-network.

Any metrizable space X is an ℵ-space. O’Meara [33] proved that an ℵ-space which is either first countable or 
locally compact is metrizable. Every compact subset of a σ-space is metrizable [32]. Further results see [22].

Pytkeev [40] proved that every sequential space satisfies the property, known actually as the Pytkeev 
property, which is stronger than countable tightness: a topological space X has the Pytkeev property if for 
each A ⊆ X and each x ∈ A \ A, there are infinite subsets A1, A2, . . . of A such that each neighborhood of 
x contains some An. Tsaban and Zdomskyy [44] strengthened this property as follows. A topological space 
X has the strong Pytkeev property if for each x ∈ X, there exists a countable family D of subsets of X, 
such that for each neighborhood U of x and each A ⊆ X with x ∈ A \A, there is D ∈ D such that D ⊆ U

and D ∩ A is infinite. Next, Banakh [1] introduced the concept of the Pytkeev network in X as follows: 
A family N of subsets of a topological space X is called a Pytkeev network at a point x ∈ X if N is a 
network at x and for every open set U ⊆ X and a set A accumulating at x there is a set N ∈ N such that 
N ⊆ U and N ∩ A is infinite. Hence X has the strong Pytkeev property if and only if X has a countable 
Pytkeev network at each point x ∈ X.

In [18] we proved that the space Cc(X) has the strong Pytkeev property for every Čech-complete Lindelöf 
space X. For the proof of this result we constructed a family D of sets in Cc(X) such that for every 
neighborhood U0 of the zero function 0 the union 

⋃
{D ∈ D : 0 ∈ D ⊆ U0} is a neighborhood of 0

(see the condition (D) in [18]). Having in mind this idea for Cc(X) we proposed in [16] the following types 
of networks which will be applied in the sequel.

Definition 1.3. ([16]) A family N of subsets of a topological space X is called

• a cn-network at a point x ∈ X if for each neighborhood Ox of x the set 
⋃
{N ∈ N : x ∈ N ⊆ Ox} is a 

neighborhood of x; N is a cn-network in X if N is a cn-network at each point x ∈ X;
• a ck-network at a point x ∈ X if for any neighborhood Ox of x there is a neighborhood Ux of x such 

that for each compact subset K ⊆ Ux there exists a finite subfamily F ⊆ N satisfying x ∈
⋂
F and 

K ⊆
⋃
F ⊆ Ox; N is a ck-network in X if N is a ck-network at each point x ∈ X;
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