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Using dynamics, Furstenberg defined the concept of a central subset of positive 
integers and proved several powerful combinatorial properties of central sets. 
Later using the algebraic structure of the Stone–Čech compactification, Bergelson 
and Hindman, with the assistance of B. Weiss, generalized the notion of a 
central set to any semigroup and extended the most important combinatorial 
property of central sets to the central sets theorem. Currently the most powerful 
formulation of the central sets theorem is due to De, Hindman, and Strauss in 
[3, Corollary 3.10]. However their formulation of the central sets theorem for 
noncommutative semigroups is, compared to their formulation for commutative 
semigroups, complicated. In this paper I prove a simpler (but still equally strong) 
version of the noncommutative central sets theorem in Corollary 3.3.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Furstenberg, in his book connecting dynamics to Ramsey theory, defined the concept of a central subset 
of positive integers [5, Definition 8.3] and proved several important properties of central sets using notions 
from topological dynamics. One such property is that whenever a central set is finitely partitioned, at least 
one cell of the partition contains a central set [5, Theorem 8.8]. Most of the remaining important properties 
of central sets are derivable from a powerful combinatorial theorem [5, Proposition 8.21]. (A bit later, in 
Theorem 1.3 on page 11, I state the most powerful formulation of [5, Proposition 8.21].) Furstenberg used his 
combinatorial theorem to prove Rado’s theorem (see the sufficiency condition of [7, Theorem 5 on page 74]
or Rado’s published dissertation [13, Satz IV on page 445]) by showing that given any central set and any 
m × n matrix M , with integer entries, that satisfies the “columns condition” we can find a vector �x all of 
whose entries are in the central set with M�x = 0.

Inspired by the fruitful interaction between ultrafilters on semigroups and Ramsey theory, Bergelson and 
Hindman, with the assistance of B. Weiss, later proved an algebraic characterization of a central subset of 

E-mail address: johnson.5316@osu.edu.

http://dx.doi.org/10.1016/j.topol.2015.03.006
0166-8641/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2015.03.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:johnson.5316@osu.edu
http://dx.doi.org/10.1016/j.topol.2015.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2015.03.006&domain=pdf


J.H. Johnson / Topology and its Applications 189 (2015) 10–24 11

positive integers [1, Section 6]. This algebraic definition has several advantages over the original dynamical 
definition: one advantage is that the algebraic definition is simple and easily generalizes to any semigroup.

Definition 1.1. Let (S, ·) be a discrete semigroup and let A ⊆ S. Then A is a central set if and only if there 
exists an idempotent p in the smallest ideal of βS with A ∈ p.

Another advantage of the algebraic definition is that central sets are “partition regular” — that is, in 
any finite partition of a central set at least one cell of the partition is a central set [5, Theorem 8.8] — is, 
because of standard properties of ultrafilters, immediate from the definition. More importantly, Furstenberg’s 
combinatorial theorem [5, Proposition 8.21] follows from a relatively simple recursive construction.

Remark 1.2. The dynamical definition of a central set also extends naturally to an arbitrary semigroup; the 
fact that the algebraic and dynamical definitions are equivalent was proved by H. Shi and H. Yang in [14]. 
Besides this introduction I will usually not emphasize the dynamical point-of-view.

Using the algebraic structure of βS, the Stone–Čech compactification of a discrete semigroup S, and a 
more sophisticated recursive construction De, Hindman, and Strauss proved the (currently) strongest version 
of the central sets theorem in [3]. (The central sets theorem is what we shall call the main combinatorial 
property central sets satisfy.) We first state the central sets theorem for commutative semigroups: the 
statement of the noncommutative version is more complicated and forms the main focus of this paper.

In the statement of the commutative central sets theorem, and in the remainder of this paper, we let 
Pf (X) denote the collection of all nonempty finite subsets of a (typically nonempty) set X, and we let AB
denote the collection of all functions with domain A and codomain B.

Theorem 1.3 (Commutative central sets theorem). Let (S, +) be a commutative semigroup and let A ⊆ S

be central. For typographical convenience we let T = NS. Then there exist functions α: Pf (T ) → S and 
H: Pf (T ) → Pf (N) that satisfy the following two statements:

(1) If F and G are both in Pf (T ) with F � G, then maxH(F ) < minH(G).
(2) Whenever m is a positive integer, G1, G2, . . . , Gm is a finite sequence in Pf (T ) with G1 � G2 � · · · �

Gm and for every i ∈ {1, 2, . . . , m} we have fi ∈ Gi, then 
∑m

i=1
(
α(Gi) +

∑
t∈H(Gi) fi(t)

)
∈ A.

Proof. This was proved by De, Hindman, and Strauss as [3, Theorem 2.2]. �
In the same paper, De, Hindman, and Strauss also formulated and proved a strong version of the central 

sets theorem for arbitrary semigroups [3, Corollary 3.10]. The statement of this version of the central sets 
theorem is necessarily complicated because the underlying semigroup may be noncommutative. (When 
the underlying semigroup is commutative, [3, Corollary 3.10] reduces to Theorem 1.3.) In the case of 
noncommutativity it is usually not sufficient — for both combinatorial (see [2, Section 1]) and algebraic (see 
[12, Theorem 1.13]) reasons — to simply perform the obvious translation of Theorem 1.3 to an arbitrary 
semigroup. Roughly speaking, the proper translation requires splitting up each translate α(Gi) into several 
parts.

To better explain this difference in formulation let’s first consider a special case of Theorem 1.3.

Corollary 1.4. Let (S, +) be a commutative semigroup and A ⊆ S central. Then for every F ∈ NS there exist 
a ∈ S and H ∈ Pf (N) such that for every f ∈ F we have a +

∑
t∈H f(t) ∈ A.

Proof. Pick functions α and H as guaranteed by Theorem 1.3. Let F ∈ NS, put m = 1, and observe from 
conclusion (2) of Theorem 1.3 we have that for every f ∈ F
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