Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Whitney levels in hyperspaces of non-metrizable continua

Luis Miguel García-Velázquez

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la Investigación Científica, Circuito Exterior, Ciudad Universitaria, México, 04510, D.F., Mexico

ARTICLE INFO

Article history: Received 13 October 2013 Received in revised form 24 November 2014 Accepted 5 December 2014 Available online 30 December 2014

MSC primary 54B20 secondary 54F15

Keywords: Continuum Hausdorff continuum Hyperspace Whitney level Whitney map

1. Introduction

A Hausdorff continuum is a nondegenerate compact connected Hausdorff space. Given a Hausdorff continuum X we consider the following hyperspaces of X:

> $2^X = \{A \subset X : A \text{ is closed and nonempty}\},\$ $C(X) = \{ A \in 2^X : A \text{ is connected} \},\$ $F_n(X) = \{ A \in 2^X : A \text{ has at most } n \text{ points} \}.$

The hyperspace 2^X is endowed with the Vietoris topology [3, Definition 1.1 and Theorem 1.2].

A generalized arc is a Hausdorff continuum X with a linear order and the topology induced by its order. That is, the topology on X is given by the subbasis: $\{(\leftarrow, x) : x \in X\} \cup \{(x, \rightarrow) : x \in X\}$, where $(\leftarrow, x) = \{y \in X : y < x\}$ and $(x, \rightarrow) = \{y \in X : x < y\}$. Every generalized arc X contains a minimal

ABSTRACT

Let X be a Hausdorff continuum (a nondegenerate, compact, connected, Hausdorff space). Let C(X) (respectively $F_1(X)$) denote the hyperspace of its subcontinua (respectively, its one-point sets), endowed with the Vietoris topology. In this paper we introduce the definition of Whitney levels in C(X) and discuss some basic properties. With this definition, the subsets $F_1(X)$ and $\{X\}$ of C(X) are Whitney levels in C(X), so we call them trivial Whitney levels. In the particular case when X is a generalized arc, we give a condition for the existence of non-trivial Whitney levels in its hyperspace of subcontinua. Finally, we apply this result to the study of Whitney levels in C(X) when X is the Long Arc and the Lexicographic Square.

© 2015 Elsevier B.V. All rights reserved.

E-mail address: lmgarcia@im.unam.mx.

element (denoted by $\min(X)$) and a maximal element (denoted by $\max(X)$). An *arc* is a space homeomorphic to the unit interval [0, 1].

Given a hyperspace H(X) of a Hausdorff continuum X, a Whitney map for H(X) is a continuous function $\mu: H(X) \to \alpha$, where α is a generalized arc, such that:

(a) $\mu(\{x\}) = \min(\alpha)$ for each $x \in X$, and

(b) if $A, B \in H(X)$ and $A \subsetneq B$, then $\mu(A) < \mu(B)$.

It is usual to find in the literature the definition of Whitney map by taking $\alpha = [0, 1]$. The following question remains open.

Question 1. Does there exist a Hausdorff continuum such that its hyperspace C(X) admits a Whitney map into a generalized arc but it does not admit one into [0, 1]?

The following theorem was proved by J.J. Charatonik and W.J. Charatonik in [1, Theorem 1].

Theorem 2. ([1, Theorem 1]) The following conditions are equivalent for a Hausdorff continuum X:

- (a) X is metrizable,
- (b) there exists a Whitney map for 2^X , and
- (c) there exists a Whitney map for $F_2(X)$.

In the case that X is a metric continuum, Whitney maps for C(X) into [0, 1] can be defined. An example of a non-metrizable continuum such that C(X) admits a Whitney map into [0, 1] is presented in [1].

If X is a generalized arc, then $F_2(X)$ can be embedded in C(X) by assigning to each element $\{x, y\}$ in $F_2(X)$ the minimal subcontinuum containing $\{x, y\}$. Hence, by Theorem 2, if X is a non-metrizable generalized arc, then there are no Whitney maps for C(X).

Given a Hausdorff continuum X and $A, B \in C(X)$ such that $A \subsetneq B$, an order arc from A to B in C(X) is a subcontinuum \mathcal{A} of C(X) such that for every $C, D \in \mathcal{A}, A \subset C \subset B$ and either $C \subset D$ or $D \subset C$. A long order arc is an order arc from $\{x\}$ to X, for some $x \in X$.

If X is a **metric** continuum a Whitney level in C(X) is a set of the form $\mu^{-1}(t) \subset C(X)$, where $\mu : C(X) \to [0,1]$ is a Whitney map and $t \in [0,1]$.

As we mentioned before, when X is a non-metrizable continuum, C(X) does not necessarily admit Whitney maps. In [2, Theorem 1.2], A. Illanes proved that Whitney levels can be defined without using Whitney maps. His result is the following.

Theorem 3. ([2, Theorem 1.2]) Let X be a metric continuum and let \mathcal{W} be a compact subset of C(X) such that $\mathcal{W} \cap F_1(X) = \emptyset$. Then \mathcal{W} is a Whitney level in C(X) if and only if \mathcal{W} satisfies the following two conditions:

(a) if $A, B \in \mathcal{W}$ and $A \neq B$, then $A \not\subset B$ and $B \not\subset A$,

(b) W intersects every long order arc in C(X).

The characterization given in Theorem 3 allows us to define Whitney levels for Hausdorff continua X, even if the hyperspace C(X) does not necessarily admit Whitney maps.

Definition 4. Let X be a Hausdorff continuum. Then a Whitney level in C(X) is a compact subset \mathcal{W} of C(X) such that either $\mathcal{W} = F_1(X)$ or $\mathcal{W} \cap F_1(X) = \emptyset$ and \mathcal{W} satisfies the following two conditions:

(4.1) if $A, B \in \mathcal{W}$ and $A \neq B$, then $A \not\subset B$ and $B \not\subset A$,

(4.2) \mathcal{W} intersects every long order arc in C(X).

Notice that $\{X\}$ and $F_1(X)$ are Whitney levels in C(X) and they are called *trivial Whitney levels*.

Download English Version:

https://daneshyari.com/en/article/4658334

Download Persian Version:

https://daneshyari.com/article/4658334

Daneshyari.com