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1. Introduction

We will examine the question below which Bani¢, Crepnjak, Merhar, and Milutinovi¢ considered in [1,2].
The following notation will enable the question to be stated more succinctly.

Let X, be a compact metric space, and let 2 represent the product space Hf; X. Given an upper
semi-continuous function f : X — 2% and a sequence (f, : X — 2%)%_; of upper semi-continuous functions,
let K =limf and K, = limf,, for each n € N. Additionally, let I'(f) = {(z,y) € X x X : y € f(z)}, and
likewise for each function f,.

Question 1.1. If lim,, I'(f,,) = I'(f) in the hyperspace 2X*¥  under what additional assumptions does it
follow that lim,, K,, = K in the hyperspace 2% ?

Bani¢, Crepnjak, Merhar, and Milutinovi¢ gave a partial answer in [2, Theorem 3.3], stating that the
statement lim,, K,, = K holds so long as f is continuous and single-valued (i.e. f : X — X)), and m (K) C
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lim inf,, 71 (K,,). We demonstrate that the condition that f be continuous and single-valued may be relaxed
in two ways yielding the following theorems.

Theorem 1.2. Let X be a compact metric space and f : X — 2% be upper semi-continuous. For each
n €N, let f, : X — 2% be an upper semi-continuous function such that lim, I'(f,) = I'(f) in 2X*X. If
71 (K) C liminf, 71 (K,) and K has the weak compact full projection property, then lim,, K, = K in 2% .

Theorem 1.3. Let X be a compact metric space and f : X — 2X be continuous. For each n € N, let
fn: X — 2% be upper semi-continuous. If w1 (K) C liminf, 71 (K,), and there exists a set A C X such that

(1) A is dense in m (K),

(2) for each a € A, AN f(a) is dense in f(a),

(3) AC f(A), and

(4) for each a € A, (fn)22, converges uniformly to f on a neighborhood of a,

then lim,, K,, = K in 2% .

Theorem 1.2 is proven in Section 3, and Theorem 1.3 in Section 4. Additionally, it will be shown that
both of these theorems are generalizations of the result of Bani¢ et al. In Section 5, Theorems 1.2 and 1.3
are generalized further to be applicable to non-constant inverse sequences.

Finally, a few examples are given in Section 6.

2. Preliminaries

If X is a compact metric space, we denote by 2% the set of all non-empty compact subsets of X. We give
this set the topology induced by the Hausdorff metric which we now define.

Definition 2.1. Suppose X is a compact metric space with metric d. If A C X is non-empty and closed, and
€ > 0, then

N(A,e)={z € X : d(z,a) < € for some a € A}.
The Hausdorff metric Hq on 2% is defined by
Ha(A,B) =inf{e >0: A C N(B,¢), and BC N(A,e)}.
The topological space (2%, Hy) is referred to as a hyperspace of X.

If X and Y are compact metric spaces and z € X, a function f : X — 2Y is said to be upper semi-
continuous at x if for every open set V C Y containing f(x), there exists an open set U C X containing
x such that f(¢) C V for all t € U. The function f is said to be upper semi-continuous if it is upper
semi-continuous at each point of X. The graph of a function f : X — 2¥, denoted I'(f), is the subset of
X x Y consisting of all points (z,y) such that y € f(z). In [6], it was shown that if X and Y are compact
metric spaces, a function f : X — 2Y is upper semi-continuous if and only if I'(f) is compact.

Suppose X = (X;);en is a sequence of compact metric spaces, and f = (f;);en is a sequence of upper
semi-continuous functions such that for each i € N, f; : X;1; — 2%i. Then the pair {X,f} is called an
inverse sequence, and the inverse limit of that inverse sequence, denoted liglf , is the set

i=1

lim f = {X € HXi cx; € fi(xiqq) forall i € N}.
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