Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Non-orientable genus of knots in punctured Spin 4-manifolds

Kouki Sato

A R T I C L E I N F O

Article history: Received 2 December 2014 Accepted 20 February 2015 Available online 5 March 2015

Keywords: Knot 4-manifold Genus Non-orientable Spin

ABSTRACT

For a closed 4-manifold X and a knot K in the boundary of punctured X, we define $\gamma^0_X(K)$ to be the smallest first Betti number of non-orientable and null-homologous surfaces in punctured X with boundary K. Note that $\gamma^0_{S^4}$ is equal to the non-orientable 4-ball genus and hence γ^0_X is a generalization of the non-orientable 4-ball genus. While it is very likely that for given X, γ^0_X has no upper bound, it is difficult to show it. In fact, even in the case of $\gamma^0_{S^4}$, its non-boundedness was shown for the first time by Batson in 2012. In this paper, we prove that for any Spin 4-manifold X, γ^0_X has no upper bound.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we work in the smooth category, all 4-manifolds are orientable, oriented and simply-connected, and all surfaces are compact. If X is a closed 4-manifold, puncX denotes X with an open 4-ball deleted.

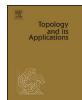
In [7], we defined the non-orientable genera of knots in puncX as follows.

Definition. Let X be a closed 4-manifold and $K \subset \partial(\text{punc}X) \cong S^3$ a knot. The non-orientable X-genus $\gamma_X(K)$ of K is the smallest first Betti number of any non-orientable surface $F \subset \text{punc}X$ with boundary K. Moreover, we define $\gamma_X^0(K)$ to be the smallest first Betti number of any non-orientable surface $F \subset \text{punc}X$ with boundary K which represents zero in $H_2(\text{punc}X, \partial(\text{punc}X); \mathbb{Z}_2)$.

We note that both $\gamma_X(K)$ and $\gamma_X^0(K)$ are generalizations of the non-orientable 4-ball genus $\gamma_4(K)$, which is the smallest first Betti number of any non-orientable surface in B^4 with boundary K. In this paper, we investigate the following problem.

Problem 1. For a given 4-manifold X, do γ_X and γ_X^0 have upper bounds?

 $\label{eq:http://dx.doi.org/10.1016/j.topol.2015.02.008} 0166\text{-}8641/ \circledcirc 2015$ Elsevier B.V. All rights reserved.



 $E\text{-}mail\ address:\ m131708n@st.u-gakugei.ac.jp.$

While γ_4 has been investigated since 1975 [9], it is difficult to evaluate γ_4 and Problem 1 had remained open even in the case of γ_4 until recently. The best reference for related studies is [2]. In 2012, Batson [1] gave a negative answer of Problem 1 in the case of γ_4 by using Heegaard Floer homology theory. (In fact, Batson proved that for any positive integer k, there exists a knot K which satisfies $\gamma_4(K) = k$.) In 2014, Tange and the author [7] applied Batson's idea to the case of $\gamma_{n\mathbb{C}P^2}^0$ and proved that $\gamma_{n\mathbb{C}P^2}^0$ also has no upper bound. On the other hand, Suzuki [8] and Norman [6] proved that if X is diffeomorphic to $S^2 \times S^2$ or $\mathbb{C}P^2 \# \mathbb{C}P^2$, then any knot bounds a disk in puncX. This result implies that for many 4-manifolds such as $(S^2 \times S^2) \# Y$ and $\mathbb{C}P^2 \# \mathbb{C}P^2 \# Y$, γ_X is bounded above by 1, where Y denotes any 4-manifold. Then, it seems natural to consider for a manifold X with γ_X bounded, whether or not γ_X^0 also has upper bound. In this paper, we prove the following theorem that gives a negative answer of this question.

Theorem 1.1. If X is a Spin 4-manifold, then γ_X^0 has no upper bound.

By this theorem, it follows that for any Spin 4-manifold X, $\gamma_{(S^2 \times S^2) \# X}$ is bounded above by 1 and $\gamma^0_{(S^2 \times S^2) \# X}$ has no upper bound. Moreover, this theorem gives an alternate proof of non-boundedness of γ_4 which is obtained from Furuta's 10/8-theorem [3] instead of Heegaard Floer homology theory.

2. Construction of a lower bound for γ_X^0

Let Y be a closed 4-manifold. For any knot $K \subset \partial(\text{punc}Y)$, we define Char(Y, K) a set of characteristic homology classes in $H_2(\text{punc}Y, \partial(\text{punc}Y); \mathbb{Z})$ which are represented by disks in puncY with boundary K. In this section, we construct a new lower bound of γ_X^0 for any Spin 4-manifold X which consists of the knot signature, an element of Char(Y, K) and invariants for X.

Proposition 2.1. Let X be a closed Spin 4-manifold and K a knot in $\partial(puncX)$. Then for any closed 4-manifold Y and any element η of Char(Y, K), we have

$$3\gamma_X^0(K) \ge \left| \sigma(K) - \frac{\eta \cdot \eta}{2} + \frac{\sigma(X) + \sigma(Y)}{2} \right| - 4 \max(\beta_2^+(X) + \beta_2^-(Y), \beta_2^-(X) + \beta_2^+(Y)) - \beta_2(X),$$

where $\sigma(K)$ and $\sigma(X)$ is the signature of K and X respectively, $\eta \cdot \eta$ is the self-intersection number of η , and β_2^+ (resp. β_2^-) is the rank of positive (resp. negative) part of the intersection form of X.

In order to prove Proposition 2.1, we need the following lemma.

Lemma 2.2. Let X be a closed 4-manifold, K a knot in the boundary of puncX, and N a non-orientable surface in puncX with $\partial N = K$ which represents a characteristic homology class in $H_2(puncX, \partial(puncX); \mathbb{Z}_2)$. Then for any closed 4-manifold Y and any element η of Char(Y, K), we have

$$\beta_1(N) \ge \frac{|e(N) - \eta \cdot \eta - \sigma(X) + \sigma(Y)|}{4} - 2\max(\beta_2^+(X) + \beta_2^-(Y), \beta_2^-(X) + \beta_2^+(Y)).$$

Proof. We first prove the lemma in the case when $\beta_1(N)$ is odd. In this case, by applying the arguments of [10, Connecting Lemma II] and [1, Proposition 3], we have a new orientable surface F in punc $(X \# (S^2 \times S^2))$ with boundary K which satisfies the following:

- (1) $\beta_1(F) = \beta_1(N) 1$,
- (2) $e(F) = e(N) + 2\varepsilon$ for some $\varepsilon = \pm 1$, and
- (3) F represents a characteristic homology class.

Download English Version:

https://daneshyari.com/en/article/4658402

Download Persian Version:

https://daneshyari.com/article/4658402

Daneshyari.com