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We study the existence of transitive expansive homeomorphisms of R2. We prove 
that there are no (orientation preserving) transitive and uniformly expansive 
homeomorphisms of the plane.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Expansiveness and transitivity are well known sources of chaotic behavior. Indeed any of these properties 
alone generates a complicated dynamical behavior when the ambient space is a compact manifold, see for 
instance [11,12,5,4,9,16]. For the non-compact case this is not necessarily true. For instance, a homothety H
of center the origin O and ratio r > 1 defined on R2 is expansive but its dynamics is trivial, all points except 
the origin diverge to ∞ by forward iteration by H and converge to O by backward iteration. For the case of 
transitiveness the first thing is that it is not evident if it is possible to exhibit a transitive homeomorphism 
defined on the plane. The first to construct such examples seems to have been L.G. Shnirelman and later 
A.S. Besicovitch. In his article [2] Besicovitch built an example of a transitive homeomorphism of the plane. 
He proved that all forward orbits departing from a straight line are dense in R2 and conjectured that all 
points of the plane had this property. Later in [3] Besicovitch exhibited orbits of the same example that are 
not transitive disproving the conjecture. In fact there is a dense subset of R2 such that its forward orbits 
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are not dense in R2 (see Lemma 2.6). It is shown in the book by Alpern and Prasad [1] that examples like 
that of [2] are maximally chaotic in the sense of Alpern and Prasad (see [1, Chapter 17]).

Mendes in [13] studied Anosov diffeomorphisms f : R2 → R
2 and proved that in that case Ω(f) is empty 

or just a single fixed point. Therefore such a diffeomorphism is expansive but not transitive.
Groisman has studied in [7,8] expansive homeomorphisms h of the plane giving conditions under which 

such a homeomorphism is conjugate to a linear hyperbolic transformation and in that case Ω(h) is a single 
fixed point or to a translation of the plane. In both cases the non-wandering set is trivial.

The question arises whether it is possible for a homeomorphism to share both, expansiveness and tran-
sitivity. But if a homeomorphism has both properties at the same time we should expect rich dynamical 
properties even in non-compact spaces. In this paper we investigate if there exists a homeomorphism of R2

with both properties at the same time. The answer is negative if non-trivial compact connected stable and 
unstable sets can be built in a neighborhood of the fixed point that necessarily exists due to Brouwer theory 
of homeomorphisms of the plane. This is the case when we ask for f : R2 → R

2 to be uniformly expansive, 
[15], and transitive (see definitions below).

We wish to pose the following questions:

1. Are there transitive expansive homeomorphisms defined on the plane (dropping the hypothesis of uni-
formity of expansiveness)?

2. What can be said with respect to transitive expansive homeomorphisms defined on Rn for n ≥ 3?

2. Lyapunov stable points

Definition 2.1. We say that the point x ∈ R
2 is f -transitive if

Orb(x) = closure
({

fn(x) : n ∈ Z
})

= R
2.

We say that x is positive (negative) f -transitive if the forward (resp.: backward) orbit by f is dense in R2, 
i.e., Orb+(x) = R

2 (resp.: Orb−(x) = R
2).

Remark 2.1. Let f : R2 → R
2 be a homeomorphism that preserves orientation. Hence, since f is assumed to 

be transitive, from Brouwer theory of homeomorphisms preserving orientation of the plane it follows that 
there exists a fixed point for f . It is immediate that if there is an f -transitive point then there is a dense 
set of f -transitive points in R2.

In the sequel we will omit to mention f when x is an f -transitive point. We will just say that it is a 
transitive point. Also we will say that f is transitive if it has a transitive point. The properties of transitive 
homeomorphisms f : X → X with X a compact manifold are well known. Moreover almost the same proofs 
are valid when X is a second countable complete metric space.

Lemma 2.2. If x is transitive then either it is positive transitive or it is negative transitive. Moreover, if 
Orb−(x) = R

2 then there is a residual subset R of R2 of positive transitive points, i.e., if y ∈ R then 
Orb+(y) = R

2.

Proof. Let x ∈ R
2 be such that Orb(x) = R

2. Then there is a sequence {nj}j∈N ⊂ Z with |nj | → +∞ such 
that fnj (x) → x. Hence for every k ∈ Z it holds that fnj+k(x) → fk(x) when j → +∞. Either there is an 
infinite subsequence of {nj} of positive numbers or one of negative ones.

In the first case, assuming that {nj} itself is of positive numbers in order not to complicate notation, 
we obtain on account of the density of the x orbit, that given z ∈ R

2 and ε > 0 there is k ∈ Z such that 
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