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In his PhD thesis [1], Abrams proved that, for a natural number n and a graph 
G with at least n vertices, the n-strand configuration space of G, denoted Cn(G), 
deformation retracts to a compact subspace, the discretized n-strand configuration 
space, provided G satisfies two conditions: each path between distinct essential 
vertices (vertices of degree not equal to 2) is of length at least n +1 edges, and each 
path from a vertex to itself which is not nullhomotopic is of length at least n + 1
edges. Using Forman’s discrete Morse theory for CW-complexes, we show the first 
condition can be relaxed to require only that each path between distinct essential 
vertices is of length at least n − 1.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The goal of this paper is to establish sufficient conditions such that a braid group on a graph may be 
studied via a certain CW complex associated to the graph. Let X denote a connected topological space. 
An n-strand configuration in X is an n-point subset of X. The unordered n-strand configuration space of 
X is the space of unordered subsets consisting of n distinct elements of X, and is denoted UCn(X). (We 
use the terms labeled and unlabeled as synonyms for the terms ordered and unordered, respectively.) For a 
positive integer n, the classical braid group Bn is the fundamental group π1(UCn(D2)), where D2 is the 
2-dimensional topological disk. Thus, from the configuration-space perspective, a braid is simply a loop in 
the space UCn(D2). Similarly, the ordered n-strand configuration space of D2, denoted Cn(D2), is the space 
of ordered tuples consisting of n distinct elements of X. The classical n-strand pure braid group, denoted 
PBn, is the fundamental group of the ordered n-strand configuration space of a disk. Note, the quotient map 
from the configuration space Cn(D2) to the unordered configuration space UCn(D2) induces a short exact 
sequence 1 → PBn → Bn → Σn → 1, where Σn is the symmetric group on n symbols. For an extensive 
reference on classical braid groups, see [3].
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Fig. 1. A nontrivial 4-braid in the cylinder K3,1 × [0, 1]. At each t ∈ [0, 1], an n-braid defines a configuration of n points of the 
graph, illustrated by the X’s on the graph at right.

In the case of graph braid groups, we let X = G be a connected graph, viewed as a 1-dimensional CW 
complex. The ordered n-strand configuration space of G is denoted Cn(G). The n-strand pure graph braid 
group PBn(G) is the fundamental group π1(Cn(G)). The unordered configuration space is UCn(G), and 
its fundamental group π1(UCn(G)) is the n-strand graph braid group Bn(G). Note that these fundamental 
groups do not depend on basepoint. Usually the configuration space is connected, but even when it is 
disconnected the components are all homeomorphic [1].

Graph braid groups, like classical braid groups, can also be viewed as isotopy classes rel endpoints of 
braids (i.e., certain n-tuples of pairwise-disjoint paths) in the cylinder on a topological space. For classical 
braid groups, this cylinder is D2 × I, where I is the interval [0, 1]. In the case of the graph braid group 
Bn(G), one considers instead braids in the cylinder G × I. Fig. 1 shows a non-trivial braid in G × I, 
where G is isomorphic to the complete bipartite graph K3,1. A braid β : I → G × I can be thought of 
as describing the simultaneous and continuous movements of the n strands, or tokens, without collisions, 
on G. To each t ∈ I, the map β associates a configuration β(t) of the n strands on G. Since β is a loop in 
the (ordered/unordered) configuration space, it follows that the configurations β(0) and β(1) are equal. For 
example, in Fig. 1, β(0) = β(1) as unordered configurations.

Besides providing a class of interesting mathematical objects, graph braid groups have real-world appli-
cations that have been discussed in [2] and [12]. An example often given is that of a fleet of mobile robots 
inside a factory, whose movement is confined to a network of track or guide tape. For an idealized robot 
of infinitesimal size, the configuration space of points on a graph shaped like the track network exactly 
describes the space of configurations of the fleet of robots.

Abrams introduces the notion of a discretized configuration space of n strands on a graph G in his 
PhD thesis [1]. This is a compact subspace of a configuration space of G, consisting of only those n-strand 
configurations x in which, for each pair of strands in x, every path in G between the two strands contains 
at least one full edge of G. Note that Cn(G) is a subspace of the cubical complex 

∏n
G, but does not inherit 

its CW structure, as it is not a compact subspace. In contrast, the discretized labeled configuration space of 
a graph G, denoted Dn(G), has a CW complex structure as a subcomplex of 

∏n
G, as does the discretized 

unlabeled configuration space, denoted UDn(G). The space UDn(G) is obtained as a quotient of Dn(G) by 
the action of the symmetric group Σn, which acts by permuting the coordinates of a labeled configuration. 
Interesting examples among these discretized configuration spaces have been described by Abrams and 
Ghrist (see [1,2,12]). We include Example 3.3 in this paper illustrating the discrete Morse function defined 
in the proof of Lemma 2.2.

For a given n, Theorem 2.1 of [1] gives sufficient conditions on G to guarantee that Cn(G) deformation 
retracts onto the subspace Dn(G), a cubical complex. We state the theorem here for reference. An essential 
vertex of a graph is a vertex whose degree is not equal to 2.

Theorem A. ([1]) Let G be a graph with at least n vertices. Then Cn(G) deformation retracts onto Dn(G) if

(A′) each path connecting distinct essential vertices of G has length at least n + 1, and
(B′) each homotopically essential path connecting a vertex to itself has length at least n + 1.
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