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If o is a topology on X and A C X, we let (o, A) denote the topology generated
by o and A, i.e., the topology with o U {A} as a subbasis. Any refinement of a
topology obtained like this — by declaring just one new set to be open — we call
stmple. The present paper investigates the preservation of various properties in
simple refinements. The locally closed sets (sets open in their closure) play a crucial
role here: it turns out that many properties are preserved in a simple refinement by

MSC: A if and only if A is locally closed. We prove this for the properties of regularity,

54A10 completely regularity, (complete) metrizability, and (complete) ultrametrizability.

54D99 We also show that local compactness is preserved in a simple refinement by A if
and only if both A and its complement are locally closed.
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1. Introduction

Possibly the most widely known result about changing a topology is the following: given a compact
Hausdorff topology on a set X, any finer topology on X is non-compact, and any coarser topology is
non-Hausdorff. This can be rephrased by saying that compact Hausdorff spaces are “minimally Hausdorft”
and “maximally compact”. Many other results are also known about spaces that have a certain property
maximally or minimally. This has been a lively area of study, and a thorough summary of results like this
can be found at the end of [14].

We change the pattern of these results as follows. Instead of looking for particular spaces in which
a property P cannot be preserved under refinement, we look at arbitrary spaces satisfying P. In some
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refinements P might be preserved and in others P might be destroyed, and our basic question is: which ones
are which?

Mostly, we restrict ourselves to a special kind of topological refinement. If o is a topology on a set X
and A C X, we let (0, A) denote the topology generated by o and A, i.e., the topology with o U {A} as
a subbasis. Any refinement of a topology obtained like this — by declaring just one new set to be open —
we call simple. Given a property P, we will try to determine for which sets A a simple refinement by A
preserves or destroys the property P.

The locally closed sets play an important role in these results. A set A C X is called locally closed (with
respect to some topology on X) if it satisfies any of the following equivalent properties:

Lemma 1.1. Let X be a topological space and A C X. The following are equivalent:

(1)
(2) A is the intersection of an open set and a closed set.

(3) A=U\V with U and V either both open or both closed.

(4) If x € A, there is some open U C X with x € U such that U N A is closed in U.

A is open in its closure.

In what follows, we will see that many nice properties of a topology o are preserved in (o, A) if A is
locally closed, and are destroyed if A is not locally closed.

We will often need to consider several topologies on a single set. To avoid confusion, we will write A to
mean the closure of A with respect to the topology o, and we will use other similar conventions for other
topological operations. If o is a topology on X and A is a collection of subsets of X, then (c,.4) is the
topology with 0 U A as a subbasis (and (o, A) is an abbreviation for (o, {A}) when A C X). If ¢ and 7 are
two topologies on X and o C 7, then [0, 7] denotes the set of all topologies o on X such that ¢ C o C 7.
This notation arises from the fact that we consider [0, 7] to be an interval in the lattice of all topologies
on X.If BC X, welet o | B={UNB:U € o} denote the subspace topology that B inherits from o.

The following few lemmas are not difficult to prove, and they will help us keep track of what is going on
as we move between o and (o, A):

Lemma 1.2. Let o and 7 be topologies on a set X with o C 7 and let B C X. Then B™ C B°.

Lemma 1.3. Let o be a topology on a set X andlet AC X. Ifx ¢ A, then {U € o:x € U} is a neighborhood
basis for x in (0, A). If v € A then {U N A:x € U € o} is a neighborhood basis for x in (o, A). If B is a

[ ”

basis for o, then “c” can be replaced with “B” in the definitions of these neighborhood bases.

Proof. This follows directly from the fact that o U {A} is a subbasis for (o, 4). O

Lemma 1.4. Let o be a topology on a set X and let A C X. If B C X then {UNDB:U € c U{A}} isa
subbasis for (o, A) | B. Moreover, {(c,A) | B = (o | B,AN B). In other words, the operations of taking
subspaces and taking simple refinements commute.

Proof. Because o U {A} is a subbasis for (0, A), {U N B:U € o U{A}} is a subbasis for (o, A) | B. To
prove the second claim, note that {UNB:U € o U{A}} ={UNB:U € 0 U{AN B}}, and the latter is by
definition a subbasis for (o | B,ANB). O

Lemma 1.5. Let o be a topology on a set X andlet AC X.I[fBC AorBC X\A, theno | B=(0,A) | B.

Proof. This is a special case of Lemma 1.4. O
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