Phantom mappings and a shape-theoretic problem concerning products

Sibe Mardešić
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10002 Zagreb, P.O. Box 335, Croatia

A R T I C L E I N F O

Article history:

Received 1 October 2013
Accepted 27 September 2014
Available online 10 October 2014

$M S C$:

54B10
54B35
54C56
Keywords:
Hawaiian earring
Pointed sum of 1 -spheres
Cartesian product
Direct product
Shape category
Resolution
Homotopy expansion
Phantom mapping

Abstract

In the paper one considers the Hawaiian earring $(\mathbb{H}, *)$, the wedge $(\mathbb{P}, *)$ of a sequence of 1 -spheres and their Cartesian product $(\mathbb{H} \times \mathbb{P}, *)$. One also considers the shape morphisms $S\left[\pi_{\mathbb{H}}\right], S\left[\pi_{\mathbb{P}}\right]$, induced by the canonical projections $\pi_{\mathbb{H}}: \mathbb{H} \times \mathbb{P} \rightarrow \mathbb{H}, \pi_{\mathbb{P}}: \mathbb{H} \times$ $\mathbb{P} \rightarrow \mathbb{P}$. The shape-theoretic problem asks if there exist a polyhedron Z and a shape morphism $H: Z \rightarrow \mathbb{H} \times \mathbb{P}, H \neq S[*]$, such that $S\left[\pi_{\mathbb{H}}\right] H=S[*]$ and $S\left[\pi_{\mathbb{P}}\right] H=$ $S[*]$. Here $S[*]$ denotes the shape morphisms, induced by the constant mappings $*: Z \rightarrow \mathbb{H} \times \mathbb{P}, *: Z \rightarrow \mathbb{H}$, and $*: Z \rightarrow \mathbb{P}$. Answering this problem affirmatively, would imply that the Cartesian product $\mathbb{H} \times \mathbb{P}$ is not a product in the shape category of topological spaces. The main result of the paper establishes equivalence between the shape-theoretic problem and a problem involving phantom mappings.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. In 1977 Y. Kodama proved that the Cartesian product of an FANR and a paracompact space is a (direct) product in the shape category of topological spaces $\operatorname{Sh}(T o p)$ [5, Theorem $\left.3^{\prime}\right]$. In the same paper he stated the following problem, which is still open.

Problem 1. Let X be a metrizable movable compactum and let M be a metrizable space. Is there a product of X and M in the shape category of metrizable spaces $\operatorname{Sh}($ (Met)?

A natural candidate for an affirmative answer to Problem 1 is the Cartesian product $X \times M$. Let \mathbb{H} denote the Hawaiian earring and let $\mathbb{M}=P_{1} \vee P_{2} \vee \ldots$ be the wedge (pointed sum) of a sequence of copies

[^0]$\left(P_{i}, *\right)$ of the pointed 1-dimensional sphere $\left(S^{1}, *\right), \mathbb{M}$ endowed with the simplicial metric topology. Then the following open problem is a very special case of Problem 1.

Problem 2. Is the Cartesian product $\mathbb{H} \times \mathbb{M}$ a product in the shape category of metrizable spaces $\operatorname{Sh}($ (Met)?
1.2. In general, polyhedra (CW-complexes) endowed with the weak topology are not metrizable spaces. Therefore, we prefer to study the analogue of Problem 2 in the shape category of topological spaces Sh(Top) and stratifiable spaces Sh (Strat).

Let $\mathbb{P}=P_{1} \vee P_{2} \vee \ldots$ be the wedge (pointed sum) of a sequence of copies $\left(P_{i}, *\right)$ of the pointed 1-dimensional sphere $\left(S^{1}, *\right), \mathbb{P}$ endowed with the weak topology.

Problem 3. Is the Cartesian product $\mathbb{H} \times \mathbb{P}$ a product in the shape category $\operatorname{Sh}(\mathrm{Top})$ of topological spaces (Sh(Strat) of stratifiable spaces)?

Note that the Hawaiian earring is the simplest movable continuum, which is not an FANR (see [12, II, $\S 7$, Example 3]). In the joint paper with J. Dydak [3], it was shown that the Cartesian product of the dyadic solenoid and \mathbb{P} is not a product in $\mathrm{Sh}(\mathrm{Top})$. However, the dyadic solenoid is not movable (see $[12, \mathrm{II}, \S 7$, Example 2]).

Stratifiable spaces were introduced in 1961 by J. Ceder under the name of M_{3}-spaces [2]. They were renamed stratifiable by C.J.R. Borges in [1]. Ceder proved that metric spaces and polyhedra (carriers of simplicial complexes endowed with the weak topology) are stratifiable spaces [2, Theorems 2.2, 2.5 and Corollary 8.6]. Moreover, the Cartesian product of two (countably many) stratifiable spaces is a stratifiable space (see [2, Theorem 2.4] or [4, Lemma 2.6]).

The objects of the category $\mathrm{Sh}(\mathrm{Top})$ are topological spaces Z. The shape morphisms $F: Z \rightarrow W$ are defined using polyhedral expansions of spaces ([12, I, §4 and §6] or [6, II, §8.2]). For homotopic mappings $g, g^{\prime}: Z \rightarrow W$, we use the standard notation $g \simeq g^{\prime}$. The homotopy class of a mapping g is denoted by $[g]$. By H (Top) we denote the category of topological spaces and homotopy classes of mappings. We denote by $S: \mathrm{H}(\mathrm{Top}) \rightarrow \mathrm{Sh}(\mathrm{Top})$ the shape functor. It keeps spaces fixed and maps morphisms of H (Top) to the induced shape morphisms (see $[12, \mathrm{I}, \S 2.3]$ or $[6, \mathrm{II}, \S 8.2]$). Whenever Q is a polyhedron (weak topology) or a simplicial complex endowed with the metric topology, then every shape morphism $G: Z \rightarrow Q$ is induced by a unique homotopy class $[g]$ of mappings $g: Z \rightarrow Q$, i.e., $G=S[g]$.

When we say that the Cartesian product $X \times P$ of a metric compactum X and a polyhedron P is a product in the shape category $\operatorname{Sh}(T o p)\left(\operatorname{Sh}(\right.$ Strat $)$), we mean that, for the canonical projections $\pi_{X}: X \times P \rightarrow X$, $\pi_{P}: X \times P \rightarrow P$ and for every topological (stratifiable) space Z, the following assertions (ES) Z and (US) Z_{Z} hold (E and U in the abbreviations stand for existence and uniqueness in shape, respectively).
$(\mathrm{ES})_{Z}$ For every shape morphism $F: Z \rightarrow X$ and every homotopy class of mappings $[g]: Z \rightarrow P$, there exists a shape morphism $H: Z \rightarrow X \times P$ such that $S\left[\pi_{X}\right] H=F$ and $S\left[\pi_{P}\right] H=S[g]$.
$(\mathrm{US})_{Z}$ If $H, H^{\prime}: Z \rightarrow X \times P$ are shape morphisms such that $S\left[\pi_{X}\right] H=S\left[\pi_{X}\right] H^{\prime}$ and $S\left[\pi_{P}\right] H=S\left[\pi_{P}\right] H^{\prime}$, then $H=H^{\prime}$.

In an analogous way we interpret the statement that the Cartesian product $X \times M$ is a product in the shape category $\mathrm{Sh}(\mathrm{Met})$.

In a previous paper the author proved the following theorem [9, Theorem 1].

Theorem 1. For every metric compactum X, every polyhedron P and every topological space Z condition $(\mathrm{ES})_{Z}$ is fulfilled.

https://daneshyari.com/en/article/4658446

Download Persian Version:
https://daneshyari.com/article/4658446

Daneshyari.com

[^0]: E-mail address: smardes@math.hr.
 http://dx.doi.org/10.1016/j.topol.2014.09.011
 0166-8641/© 2014 Elsevier B.V. All rights reserved.

