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In this paper, the remainders of semitopological and paratopological groups are 
investigated. We mainly establish that if G is a non-locally compact semitopological 
group and bG is a compactification of G such that Y = bG \G has locally a point-
countable base, then bG is separable and metrizable. This gives a positive answer to 
a question posed in Wang and He (2014) [25]. We also show that if G is a non-locally 
compact R1-factorizable paratopological group and Y = bG \ G is a local ℵ-space, 
then bG is separable and metrizable. Some questions in [14] are answered.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

“A space” in this paper stands for a Tychonoff topological space. A remainder of a space X is the space 
bX \X, where bX is a Hausdorff compactification of X.
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The question when a space X has a Hausdorff compactification with the remainder belonging to a given 
class of spaces is important. A famous classical result in this direction is the theorem of M. Henriksen and 
J. Isbell [13]:

Theorem 1.1. A space X is of countable type if and only if the remainder in any (in some) compactification 
of X is Lindelöf.

Recall that a space X is of countable type if every compact subspace F of X is contained in a compact 
subspace K ⊆ X with a countable base of open neighborhoods in X.

Recall that a semitopological group (resp., paratopological group) is a group with a topology such that 
the multiplication in the group is separately continuous (resp., jointly continuous). If G is a paratopological 
group and the inverse operation of G is continuous, then G is called a topological group. The reader can find 
a lot of recent progress about paratopological (or semitopological) groups in the survey article [24].

A series of results on remainders of topological groups have been obtained in [2,4,6,7,17]. They show 
that remainders of topological groups are much more sensitive to the topological properties of groups than 
the remainders of topological spaces are in general. However, much less is known about remainders of 
paratopological (semitopological) groups [24]. The reader can find some recent progress in this direction 
in [9,14,18,25–27]. In this paper, we will continue to study how the generalized metrizability of remainders 
affects the paratopological (semitopological) groups.

First, we recall some concepts [1,12].
A base B for a space X is said to be uniform if for each injective sequence (Bn) ⊆ B and every x ∈

⋂
n∈ω Bn, the sequence (Bn) is a base at x.
A base B for a space X is said to be weakly uniform if for each countably infinite family U ⊆ B and for 

each x ∈ X, if x ∈ U for each U ∈ U , then {x} =
⋂

U .
A base B for a space X is said to be sharp if for every x ∈ X and every sequence (Un) of pairwise distinct 

elements of B with x ∈ Un for all n ∈ ω, the collection {
⋂

i≤n Ui : n ∈ ω} forms a base at x.
Recall that a space X has a base of countable order (BCO) if X has a base B such that whenever x ∈ X

and a strictly decreasing sequence (Bn) of elements of B is such that x ∈
⋂

n∈ω Bn, then (Bn) is a base at x.
Let (Un) be a sequence of open covers of a space X. Recall that, for every x ∈ X and n, st(x, Un) =

⋃
{U ∈ Un : x ∈ U}.
A sequence of open covers (Un) of a space X is called:
• A Gδ-diagonal sequence, if for every x ∈ X, 

⋂
n∈ω st(x, Un) = {x}. A space with a Gδ-diagonal sequence 

is called a space with a Gδ-diagonal.
• A weak development, if for every x ∈ X and the sequence (Un) such that x ∈ Un ∈ Un for every n, the 

sequence (
⋂

i≤n Ui) is a base at x. A space with a weak development is called a weakly developable space.
• A development, if for every x ∈ X, the sequence (st(x, Un)) is a base at x. A space with a development 

is called a developable space.
The implications of the following diagram have been established in [1, Theorem 3.5].

X has a uniform base
����

X has a sharp base

����
X is development

����

����
X is weakly development � X has BCO

If X is metacompact, then all the five assertions above are equivalent [1, Theorem 3.5].
The question whether a non-locally compact topological group G is separable and metrizable if G has 

a BCO remainder is still open [17, Question 14]. Arhangel’skǐı [6] proved that if the remainder of the 
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