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We consider four classes of topological spaces which are defined with the aid of 
convergence with respect to ideals on N. All these classes are subclasses of countably 
compact spaces, and two of them are also subclasses of sequentially compact spaces. 
In the first part of the paper (Sections 1 and 2) we prove some properties of these 
classes. In the second part of the paper (Sections 3 and 4) we focus on spaces defined 
by two particular ideals connected with well known theorems in combinatorics, 
namely van der Waerden’s theorem and Hindman’s theorem. The main aim of this 
part of the paper is to show that two classes of the considered spaces coincide for 
the van der Waerden ideal and Hindman ideal respectively.

© 2014 Elsevier B.V. All rights reserved.

1. BW-spaces

Throughout this paper, all topological spaces are assumed to be Hausdorff.
By an ideal on a set X we mean a nonempty family of subsets of X closed under taking finite unions 

and subsets of its elements. By Fin(X) we denote the ideal of all finite subsets of X (for X = N we write 
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Fin = Fin(N)). Moreover, we always assume that ideals are proper (i.e. X /∈ I) and contains all finite subsets 
of X (i.e. Fin(X) ⊆ I). We say that an ideal I is a P -ideal if for every countable family {An : n ∈ N} ⊆ I
there exists A ∈ I such that An \A is finite for any n ∈ N.

By Y X we denote the set of all functions from X into Y , and in the case of X ⊆ N the set Y X is the set 
of all sequences (yn)n∈X with yn ∈ Y for n ∈ X.

Let X be a topological space, I be an ideal on N and A ⊆ N. We say that a sequence (xn)n∈A ∈ XA is 
I-convergent to x ∈ X if

{n ∈ A : xn /∈ U} ∈ I

for every open neighborhood U ⊆ X, x ∈ U . For I = Fin we obtain the ordinary convergence.
We say that the pair (X, I) has

(1) BW property if every sequence (xn)n∈N ∈ XN has an I-convergent subsequence (xn)n∈A with A /∈ I;
(2) FinBW property if every sequence (xn)n∈N ∈ XN has a Fin-convergent subsequence (xn)n∈A with A /∈ I;
(3) hBW property if every sequence (xn)n∈A ∈ XA with A /∈ I has an I-convergent subsequence (xn)n∈B

with B ⊆ A and B /∈ I;
(4) hFinBW property if every sequence (xn)n∈A ∈ XA with A /∈ I has a Fin-convergent subsequence 

(xn)n∈B with B ⊆ A and B /∈ I.

We write (X, I) ∈ BW if the pair (X, I) has the BW property; we say that an ideal I has the BW property
(I ∈ BW, in short) if the pair ([0, 1], I) ∈ BW (and the same for properties FinBW, hBW and hFinBW). 
For examples and properties of ideals with(out) the BW-like properties see [6] where these definitions were 
introduced.

Clearly, the following diagram holds. By “A → B” we mean “if (X, I) ∈ A then (X, I) ∈ B”. If there is 
no arrow in some direction between A and B, then it means that, in general, (X, I) ∈ A does not imply 
(X, I) ∈ B (see [6] for examples of ideals showing that no other implications hold).
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The following theorems give us plenty of examples of spaces and ideals with BW-like properties.

Theorem 1.1. ([7, Corollary 5.7]) Suppose that a topological space X satisfies the following condition:

the closure of every countable set in X is compact and first countable. (∗)

If

(1) I can be extended to an Fσ ideal (e.g. I is an analytic P -ideal with the BW property), or
(2) I can be extended to a maximal P -ideal, or
(3) I is a maximal ideal,

then (X, I) ∈ BW (in the case (1) and (2), (X, I) ∈ FinBW).
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