

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Note on countable closed discrete sets in products of natural numbers

Elżbieta Pol*, Roman Pol

University of Warsaw, Poland

ARTICLE INFO

Article history: Received 21 May 2013 Received in revised form 11 February 2014 Accepted 16 July 2014 Available online 26 July 2014

MSC:

primary 54B10, 54D15, 54C45 secondary 54D60

Keywords: Products of natural numbers Non-normality Countable closed discrete sets C- and C*-embeddings

ABSTRACT

We provide several examples concerning extensions of real-valued functions on countable closed discrete subsets of products \mathbb{N}^{ω_1} or $\mathbb{N}^{2^{\omega}}$ of natural numbers over the whole products.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Our terminology follows [9]. A subset A of a topological space X is C (C^*)-embedded in X if any continuous real-valued (and bounded) function on A extends continuously over X. We shall denote by \mathbb{N}^{κ} the product of κ copies of natural numbers \mathbb{N} .

For a countable closed discrete set A in \mathbb{N}^{κ} , C (C^{\star})-embedding means that each function from A to \mathbb{N} (to $\{0,1\}$) can be extended over \mathbb{N}^{κ} to a continuous function with the same range, and if some injection of A into \mathbb{N} has such an extension, then A is C-embedded in \mathbb{N}^{κ} , cf. [9], 3L and [11], Section 1.

In a recent interesting paper, Keith M. Fox [8] constructed a variety of countable closed discrete not C^* -embedded sets in \mathbb{N}^{ω_1} .

We shall use a different approach, based on [19,15,17,3] to the following effect:

E-mail addresses: E.Pol@mimuw.edu.pl (E. Pol), R.Pol@mimuw.edu.pl (R. Pol).

^{*} Corresponding author.

Example 1.1. There is a countable closed discrete set A in \mathbb{N}^{ω_1} and an uncountable almost disjoint collection \mathcal{A} of infinite subsets of A such that

- (i) for each countable $\mathcal{C} \subset \mathcal{A}$ there is a C-embedded in \mathbb{N}^{ω_1} subset of A which almost contains each member of \mathcal{C} ,
- (ii) there are no C^* -embedded in \mathbb{N}^{ω_1} subsets of A which almost contain uncountably many members of A.

If we assume that $\omega_1 < \mathfrak{r}$ (cf. [2]), one can assert in (ii) that no subset of A which has infinite intersection with uncountably many members of A, is C^* -embedded in \mathbb{N}^{ω_1} , cf. Section 4.1.

We shall also show that in $\mathbb{N}^{2^{\omega}}$ there is a countable closed discrete set A which can be split into two sets such that for no $\kappa < 2^{\omega}$ these sets can be enlarged to unions of intersections of κ many zero-sets with disjoint closures, and there is a bijection of A onto the set of rationals in the open interval (0,1) taking C^* -embedded in $\mathbb{N}^{2^{\omega}}$ sets onto sets with countable closures in [0,1] and vice versa, cf. Section 3.

The particular set A that we shall construct has the property that C^* -embedded in $\mathbb{N}^{2^{\omega}}$ subsets of A are also C-embedded in $\mathbb{N}^{2^{\omega}}$. Let us recall, however, that this is not always the case, cf. Section 4.3.

2. Construction of Example 1.1

Let us recall a theorem of Mycielski [15], cf. [10], A1.6:

(A) There is a closed discrete set $M = \{a_{\alpha} : \alpha < \omega_1\}$ in \mathbb{N}^{ω_1} such that for any $\alpha < \omega_1$ the projection of $M_{\alpha} = \{a_{\beta} : \beta < \alpha\}$ onto some coordinate is injective.

By a theorem of Rothberger [19], Theorem 3 (cf. [13]), the Mycielski set is in the sequential closure of some countable subset of \mathbb{N}^{ω_1} , i.e.,

(B) there are points $s_n \in \mathbb{N}^{\omega_1}$, $n = 1, 2, \ldots$, such that for any $a_{\alpha} \in M$ there is a sequence $n_1 < n_2 < \ldots$ with $s_{n_i} \to a_{\alpha}$ in \mathbb{N}^{ω_1} .

We shall also use the following two observations, the first contained in a proof of Example 2 in [17] (cf. also Section 4.2) and the second one being Lemma 9.1 in [3]:

- (C) for each uncountable closed discrete set D in \mathbb{N}^{ω_1} there is a locally countable in \mathbb{N}^{ω_1} collection \mathcal{E} of zero-sets such that $D \subset \bigcup \mathcal{E}$ and no zero-set in \mathbb{N}^{ω_1} contained in $\bigcup \mathcal{E}$ intersects D in an uncountable set,
- (D) if $X \subset \mathbb{N}^{\omega_1}$ and \mathbb{N}^{ω_1} has an open cover by sets U such that $U \cap X$ admits a closed embedding in \mathbb{N}^{ω_1} , then X embeds as a closed set in \mathbb{N}^{ω_1} .

It is worth recalling that if $X_{\alpha} \subset \mathbb{N}^{\omega_1}$, $\alpha < \omega_1$, embeds as a closed set in \mathbb{N}^{ω_1} , so does $X = \bigcap_{\alpha} X_{\alpha}$, as X can be identified with the diagonal of the product $\prod_{\alpha} X_{\alpha}$. Since for each zero set Z in \mathbb{N}^{ω_1} , $\mathbb{N}^{\omega_1} \setminus Z$ embeds as a closed set in \mathbb{N}^{ω_1} ($\mathbb{N}^{\omega_1} \setminus Z$ is homeomorphic with $\bigcup_n U_n \times \{n\}$, where U_n are closed-and-open in \mathbb{N}^{ω_1} , pairwise disjoint and cover $\mathbb{N}^{\omega_1} \setminus Z$), we infer that any complement of ω_1 zero-sets in \mathbb{N}^{ω_1} embeds as a closed set in \mathbb{N}^{ω_1} , cf. [4], 8.18.

Let us check also the following simple fact:

(E) if $L \subset \mathbb{N}^{\omega_1}$, \mathfrak{F} is a collection of countable closed discrete subsets of L which are C-embedded in L, $|\mathfrak{F}| \leq \omega_1$ and L admits a closed embedding in \mathbb{N}^{ω_1} , then there is a closed embedding $g: L \to \mathbb{N}^{\omega_1}$ such that each g(F), for $F \in \mathfrak{F}$, is C-embedded in \mathbb{N}^{ω_1} .

Download English Version:

https://daneshyari.com/en/article/4658493

Download Persian Version:

https://daneshyari.com/article/4658493

<u>Daneshyari.com</u>