Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On isometric embeddings of separable metric spaces

Stavros Iliadis

Moscow State University (M.V. Lomonosov), Russian Federation

ARTICLE INFO

Article history: Received 1 April 2014 Accepted 26 July 2014 Available online 17 September 2014

MSC:54C25 54D80 54E45 54F45

Keywords: Separable metric space Isometric embedding Isometrically ω -saturated class Property of f-distances f-Uniform class of spaces

1. Introduction

We recall some well-known classes of separable metric spaces having isometrically universal elements. In [12] (see also [13]) it is constructed a space which is isometrically universal in the class of all separable metric spaces. In [1] it is proved that the space C[0, 1] of all continuous functions on the segment [0, 1] with the metric of uniform convergence is also such a space. In [2] isometrically universal elements are constructed in the following classes of spaces.

 $\mathbb{S}(1)$: The class of all separable metric spaces.

- $\mathbb{S}(2)$: The class of all separable metric spaces of dimension $\leq n \in \omega$.
- S(3): The class of all separable metric countable-dimensional spaces.
- $\mathbb{S}(4)$: The class of all separable metric strongly countable-dimensional spaces.
- S(5): The class of all separable metric locally finite-dimensional spaces.
- S(6): The class of all separable metric spaces of transfinite dimension ind less than or equal to a countable ordinal α .
- $\mathbb{S}(7)$: The class of all separable metric spaces of metric dimension $\leq m \in \omega$.
- $\mathbb{S}(8)$: The class of all separable metric spaces of metric dimension $\leq m \in \omega$ and dimension $\mathrm{ind} \leq n \in \omega$.

 $\label{eq:http://dx.doi.org/10.1016/j.topol.2014.08.019 0166-8641/© 2014$ Elsevier B.V. All rights reserved.

ABSTRACT

In this paper, we consider spaces having the so-called property of f-distances, where f is a positive decreasing function defined on ω such that $f(n) \leq \frac{1}{2^n}$. It is proved that for well-known classes S of separable metric spaces (in [2] they are called isometrically ω -saturated classes of spaces) the following is true: for a given collection **S** of elements of S with the property of f-distances, there exists an element of S with the property of g-distances containing isometrically each element of **S**, where g is the function on ω for which $g(n) = f(n+2), n \in \omega$.

© 2014 Elsevier B.V. All rights reserved.

Moreover, in [2] it is proved that the classes S(1)-S(8) are isometrically ω -saturated classes of spaces. (About topologically universal elements in the classes S(1)-S(6) see, respectively, [11,7,6,9,10,5].)

In [8] families \mathbf{F} of metric spaces with the following properties are considered: (a) the diameter of each element of \mathbf{F} is less than or equal to a fixed number \mathbf{d} and (b) for every $k \in \omega$ there exists a fixed natural number $\mathbf{n}(k)$ such that each element of \mathbf{F} has a finite $\frac{1}{k}$ -net the number of elements of which is less than or equal to $\mathbf{n}(k)$. The following result is proved: the conditions (a) and (b) are sufficient (and obviously necessary) for the existence of a totally bounded metric space containing isometrically all elements of the family \mathbf{F} . In [2] a collection of spaces satisfying properties (a) and (b) is called *uniform* and it is proved that if \mathbf{F} is a uniform collection of elements of a isometrically ω -saturated class \mathbb{S} of spaces, then there exists a totally bounded element of \mathbf{F} . In particular, \mathbb{S} may coincides with one of the classes $\mathbb{S}(i), i \in \{1, \dots, 8\}$.

In the present paper we introduce another kind of a "uniform" collection of metric spaces. As the above, for any such uniform subcollection **S** of the class S(i), $i \in \{1, ..., 8\}$, there exists an element of S(i) containing isometrically all elements of **S** and which is very "close" to this subcollection. The metric property which is used for the definition of this kind of "uniformity" appeared in the papers [3] and [4], where it is proved that there exists a separable complete metric space of dimension (in the sense of ind) $n \in \omega^+$ containing isometrically all compact metric spaces of dimension n.

Let f be a positive decreasing function defined on ω such that $f(n) \leq \frac{1}{2^n}$, $n \in \omega$. It is said that a separable metric space X has the property of f-distances if it has a base whose elements have the property of f-distances (see Section 2 for the definition). A collection \mathbf{S} of separable metric spaces is said to be f-uniform if each element of \mathbf{S} has the property of f-distances. The main result is Theorem 3.2 which is proved using the method of the papers [3] and [4]. A corollary of this theorem is the following result: Let \mathbf{S} be an f-uniform family consisting of elements of $\mathbb{S}(i)$, $i \in \{1, \dots, 8\}$. Then, there exists an element of $\mathbb{S}(i)$ having the property of g-distances, where g is the function on ω for which g(n) = f(n+2), $n \in \omega$, containing isometrically each element of \mathbf{S} . The class $\mathbb{S}(i)$ may be replaced by any isometrically ω -saturated class.

2. Preliminaries

2.1. Notation

All considered spaces are assumed to be separable metric. The metric of a space X is denoted by ρ_X . For every subset Q of a space X, including the empty set, we assume that $\rho_X(\emptyset, Q) = \infty > 0$. Also, we denote by $Cl_X(Q)$, $Int_X(Q)$, $Bd_X(Q)$, and Diam(Q) its closure, interior, boundary, and diameter, respectively. For every $\varepsilon > 0$ we put

$$O_{\varepsilon}^{X}(Q) = \left\{ x \in X : \rho_{X}(x,Q) < \varepsilon \right\}.$$

By ω we denote the set of non-negative integers. Each element $n \in \omega \setminus \{0\}$ is identified with the set $\{0, \dots, n-1\}$. The element 0 is identified with the empty set. Therefore, for two elements $n, m \in \omega$, the relations $n \in m+1$, $n \subset m$, and $n \leq m$ are equivalent.

2.2. The metric space T(M, R, P)

(See [3]. For the notions that are not determined here, see [2, Chapters 1 and 9].) Below, for an indexed collection **S** of spaces we give briefly the construction of a compatible metric $\rho_{\rm T}$ on a topological space $T(\mathbf{M}, \mathbf{R})$, where

$$\mathbf{M} \equiv \left\{ \left\{ U_{\delta}^{X} : \delta \in \tau \right\} : X \in \mathbf{S} \right\} \text{ and } \mathbf{R} \equiv \left\{ \sim^{s} : s \in \mathcal{F} \right\}$$

Download English Version:

https://daneshyari.com/en/article/4658519

Download Persian Version:

https://daneshyari.com/article/4658519

Daneshyari.com