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All spaces under discussion are metrizable.

In the present time we see the rapid development of the theory of CDH-spaces and their near general-
izations. For example, K. Kunen, A. Medini, and L. Zdomskyy [9, Theorem 16| proved that if a separable
metrizable non-Baire space X has the perfect set property for open sets, then X has ¢ types of countable
dense subsets. We will show (see Corollary 2) that a similar result remains valid if we replace “X has the
PSP (open)” by the weaker condition “X is not a A-space”.

We introduce the A-spaces as a generalization of the A-spaces for non-separable spaces and consider
their properties. Theorem 4 shows how a A-space can be converted into an h-homogeneous A-space of
arbitrary weight. Theorem 5 improves the result due to R. Herndndez-Gutiérrez, M. Hrusék, and J. van
Mill [5, Proposition 4.9] concerning CDH-property of h-homogeneous A-spaces. An internal characteristic of
h-homogeneous DH-spaces of the first category is given by Theorem 6.

In the paper we are not dealing with the set-theoretic methods; only topological methods are applied. In

particular, a purely topological way in obtaining a CDH A-space of size X; is found, see Remark 4.
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1. DH-Spaces

For all undefined terms and notations see [2].

X =~ Y means that X and Y are homeomorphic spaces. A separable topological space X is countable
dense homogeneous (briefly, CDH) if, given any two countable dense subsets A and B of X, there is a
homeomorphism h: X — X such that h(A) = B. The type of a countable dense subset D of a separable
space X is the family {h(D): h is a homeomorphism of X }. So a separable space is CDH if and only if it has
exactly one type of countable dense subsets.

A metrizable space X is densely homogeneous (briefly, DH) provided that if A and B are two o-discrete
dense subsets of X, then there is a homeomorphism h: X — X such that h(A) = B. Clearly, if X is a
separable space, then X is CDH < X is DH.

A space X is called a space of the first category (or meager) if it can be represented as a countable union
of nowhere dense subsets.

Lemma 1 was obtained by the author [15, Theorem 3]. Independently it was proved for separable spaces
by B. Fitzpatrick Jr. and H.-X. Zhou [4].

Lemma 1. For a metric space X the following are equivalent:
1) the space X is of the first category,
2) X contains a o-discrete dense set of type Gs without isolated points.

Recall that a separable space in which every countable set is a Gs-set is called a A-space. This notion is
due to Kuratowski [10]. Likewise, a space in which every o-discrete set is a Gs-set will be called a A-space.
Of course, a separable A-space is a A-space. From Lemma 1 it follows that every metrizable A-space without
isolated points is of the first category in itself. One can check that if a space X contains a copy of the Cantor
set 2¢, then X is not a A-space.

For a remarkable survey of what is known to date about A-spaces, see [5].

The following statement is similar to [4, Theorem 3.4].

Theorem 1. Every DH-space X of the first category is a A-space.

Proof. Take a o-discrete subset A of X. By Lemma 1, there is a o-discrete dense Gg-set B C X. Clearly,
AU B is a o-discrete dense subset of X. Then AU B is a Gs-set in X because AU B = h(B) for some
homeomorphism h: X — X. Since A is a Gg-set in AU B, Aisa Gs-set in X. O

Corollary 1. Let X be a space of the first category. If X is not a A-space, then X is not DH.
Proof. If X were a DH-space, X would be a A-space by Theorem 1. A contradiction. O

We shall now show the following improvement on Corollary 1. To obtain this result we shall use ideas
from the proof of [6, Theorem 4.5].

Theorem 2. Suppose a space X has an open subset which is of the first category in itself and is not a A-space.
Then X has at least ¢ types of o-discrete dense subsets.

Proof. The set V = |J{U:U is an open set of the first category in X} is the largest open set of the first
category in X. The set Y = X \ J{U:U is a A-space and U is open in X} is closed in X. One can check
that a point y € Y & every neighborhood of y is not a A-space. Under the conditions of the theorem,
V' NY # (. We shall consider two possibilities.
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