Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Metrizable DH-spaces of the first category

S.V. Medvedev

Department of Mathematical and Functional Analysis, South Ural State University, pr. Lenina, 76, Chelyabinsk, 454080, Russia

ARTICLE INFO

Available online 20 September 2014

MSC: 54H05 54E52

Keywords: h-Homogeneous space Set of the first category Densely homogeneous Countable dense homogeneous A-Space

ABSTRACT

We show that if a separable space X contains an open subset which is of the first category in itself and is not a λ -space, then X has \mathfrak{c} many types of countable dense subsets. We introduce Λ -spaces as a generalization of the λ -spaces for non-separable case and consider properties of these spaces. In particular, we prove that if X is a non- σ -discrete h-homogeneous Λ -space, then X is densely homogeneous and $X \setminus A$ is homeomorphic to X for every σ -discrete subset $A \subset X$.

@ 2014 Elsevier B.V. All rights reserved.

All spaces under discussion are metrizable.

In the present time we see the rapid development of the theory of CDH-spaces and their near generalizations. For example, K. Kunen, A. Medini, and L. Zdomskyy [9, Theorem 16] proved that if a separable metrizable non-Baire space X has the perfect set property for open sets, then X has \mathfrak{c} types of countable dense subsets. We will show (see Corollary 2) that a similar result remains valid if we replace "X has the PSP(open)" by the weaker condition "X is not a λ -space".

We introduce the Λ -spaces as a generalization of the λ -spaces for non-separable spaces and consider their properties. Theorem 4 shows how a Λ -space can be converted into an h-homogeneous Λ -space of arbitrary weight. Theorem 5 improves the result due to R. Hernández-Gutiérrez, M. Hrušák, and J. van Mill [5, Proposition 4.9] concerning CDH-property of h-homogeneous λ -spaces. An internal characteristic of h-homogeneous DH-spaces of the first category is given by Theorem 6.

In the paper we are not dealing with the set-theoretic methods; only topological methods are applied. In particular, a purely topological way in obtaining a CDH λ -space of size \aleph_1 is found, see Remark 4.

E-mail address: medv@is74.ru.

1. DH-Spaces

For all undefined terms and notations see [2].

 $X \approx Y$ means that X and Y are homeomorphic spaces. A separable topological space X is *countable dense homogeneous* (briefly, CDH) if, given any two countable dense subsets A and B of X, there is a homeomorphism $h: X \to X$ such that h(A) = B. The *type* of a countable dense subset D of a separable space X is the family $\{h(D): h \text{ is a homeomorphism of } X\}$. So a separable space is CDH if and only if it has exactly one type of countable dense subsets.

A metrizable space X is densely homogeneous (briefly, DH) provided that if A and B are two σ -discrete dense subsets of X, then there is a homeomorphism $h: X \to X$ such that h(A) = B. Clearly, if X is a separable space, then X is CDH $\Leftrightarrow X$ is DH.

A space X is called a space of the first category (or meager) if it can be represented as a countable union of nowhere dense subsets.

Lemma 1 was obtained by the author [15, Theorem 3]. Independently it was proved for separable spaces by B. Fitzpatrick Jr. and H.-X. Zhou [4].

Lemma 1. For a metric space X the following are equivalent:

- 1) the space X is of the first category,
- 2) X contains a σ -discrete dense set of type G_{δ} without isolated points.

Recall that a separable space in which every countable set is a G_{δ} -set is called a λ -space. This notion is due to Kuratowski [10]. Likewise, a space in which every σ -discrete set is a G_{δ} -set will be called a Λ -space. Of course, a separable Λ -space is a λ -space. From Lemma 1 it follows that every metrizable Λ -space without isolated points is of the first category in itself. One can check that if a space X contains a copy of the Cantor set 2^{ω} , then X is not a Λ -space.

For a remarkable survey of what is known to date about λ -spaces, see [5].

The following statement is similar to [4, Theorem 3.4].

Theorem 1. Every DH-space X of the first category is a Λ -space.

Proof. Take a σ -discrete subset A of X. By Lemma 1, there is a σ -discrete dense G_{δ} -set $B \subset X$. Clearly, $A \cup B$ is a σ -discrete dense subset of X. Then $A \cup B$ is a G_{δ} -set in X because $A \cup B = h(B)$ for some homeomorphism $h: X \to X$. Since A is a G_{δ} -set in $A \cup B$, A is a G_{δ} -set in X. \Box

Corollary 1. Let X be a space of the first category. If X is not a Λ -space, then X is not DH.

Proof. If X were a DH-space, X would be a Λ -space by Theorem 1. A contradiction. \Box

We shall now show the following improvement on Corollary 1. To obtain this result we shall use ideas from the proof of [6, Theorem 4.5].

Theorem 2. Suppose a space X has an open subset which is of the first category in itself and is not a Λ -space. Then X has at least \mathfrak{c} types of σ -discrete dense subsets.

Proof. The set $V = \bigcup \{U: U \text{ is an open set of the first category in } X\}$ is the largest open set of the first category in X. The set $Y = X \setminus \bigcup \{U: U \text{ is a } A\text{-space and } U \text{ is open in } X\}$ is closed in X. One can check that a point $y \in Y \Leftrightarrow$ every neighborhood of y is not a $A\text{-space. Under the conditions of the theorem, } V \cap Y \neq \emptyset$. We shall consider two possibilities.

Download English Version:

https://daneshyari.com/en/article/4658526

Download Persian Version:

https://daneshyari.com/article/4658526

Daneshyari.com