Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Topology and its Applications

www.elsevier.com/locate/topol

Fiberwise contraction mappings principle

B.A. Pasynkov ∗

Moscow State University, Russia

A R T I C L E I N F O A B S T R A C T

Available online 20 September 2014

MSC: primary 54H25 secondary 54E35, 54E50, 54C10, 54C65

Keywords: Contraction mappings principle Metric mapping Fiberwise completeness Quotient mapping Map-morphism Continuous section

Banach's contraction mappings principle is extended over metric mappings. © 2014 Published by Elsevier B.V.

Below a space means a topological space.

In this paper, Banach's contraction mappings principle will be extended from the case of metric spaces over the case of metric mappings.

Recall (see [\[1\]\)](#page--1-0) that a *metric* on a mapping f of a set X to a space (Z, θ) is a pseudometric ρ on X such that it is a metric on every fiber $f^{-1}z$ of f, $z \in Z$. The topology $\tau(f, \rho)$ on f generated by the metric ρ on f is the topology on X with the base $\tau_{\rho} \wedge f^{-1}\theta = \{U \cap f^{-1}O : U \in \tau_{\rho}, O \in \theta\}$, where τ_{ρ} is the topology on *X* generated by the pseudometric ρ .

A pair (f, ρ) consisting of a mapping f of a set to a space and of a metric ρ on f is called a *metric mapping*. Evidently, for every metric mapping (f, ρ) the mapping $f : (X, \tau(f, \rho)) \to Z$ is continuous. (Usually for any metric mapping $(f, \rho) : X \to Z$, we shall consider X with the topology $\tau(f, \rho)$.) A metric mapping (f, ρ) is called *fiberwise complete* if ρ is a complete metric on every fiber of f.

For a continuous mapping $f: X \to Z$, a continuous mapping $A: X \to X$ is called a *map-morphism* $A: f \to f$ (of *f* to *f*) if $f \circ A = f$ (hence $A(f^{-1}z) \subset f^{-1}z$ for any $z \in Z$).

Topology and its
Applications

^{*} Correspondence to: Department of General Topology and Geometry, Mechanics and Mathematics Faculty, Moscow State University, 119899 Moscow, Russia.

E-mail address: [bpasynkov@gmail.com.](mailto:bpasynkov@gmail.com)

For a metric mapping $f : X \to Z$, a map-morphism $A : f \to f$ is called β -contracting ($\equiv a \beta$ -contraction) for a real-valued function $\beta(z)$, $z \in Z$, if for any $z \in Z$ and any $x, x' \in f^{-1}z$,

$$
0 \le \beta(z) < 1
$$
 and $\rho(Ax, Ax') \le \beta(z) \cdot \rho(x, x').$

Thus β -contracting map-morphism $A : f \to f$ is a $\beta(z)$ -contracting mapping of the fiber $f^{-1}z$ for any $z \in Z$.

Definition 1. Let we have a continuous mapping $f : X \to Z$. A map-morphism $r : X \to X$ will be called a *fiberwise* retraction (or an *f*-retraction) of *X* onto $R = rX$ if $r(x) = x$ for any $x \in R$. In this situation, *R* will be called a *fiberwise retract* (or an *f-retract*) of *X*.

Definition 2. For a continuous mapping $f: X \to Z$, a (not necessary continuous) mapping $s: Z \to X$ will be called a *retract section* of f if $f \circ s = idz$ and sZ is an f-retract of X. (Evidently, s is a one-to-one mapping of *Z* on *sZ*.)

For a continuous mapping $f : X \to Z$, a real-valued nonnegative function β on Z will be called *locally strongly* 1-bounded if for any $z \in Z$ there exist a neighbourhood Oz of z and a positive number $\gamma = \gamma(z) < 1$ such that $\beta(z') \leq \gamma$ for all $z' \in Oz$.

Theorem 1 *(The weak fiberwise contraction mappings principle). Let we have a fiberwise complete metric* onto mapping $f: X \to Z$ and let a map-morphism $A: f \to f$ be β -contracting for a locally strongly 1-bounded function $\beta(z)$, $z \in Z$, then there exists a unique retract section $s: Z \to X$ of f such that sZ *consists* of all fixed points of the mapping $A: X \to X$ (hence $A \circ s = s$) and

$$
(*) \ \rho(x, s(fx)) \le \rho(x, Ax) \cdot \frac{1}{1 - \beta(fx)}, \quad x \in X.
$$

Proof. It follows from the standard proof of the theorem on contracting mappings of complete metric spaces and from the fiberwise completeness of *f* (and because *A* is a map-morphism) that for any $z \in Z$ and any *x* ∈ $f^{-1}z$ the sequence $A^n x$, $n = 0, 1, \ldots$, converges to a point $r(x) \in f^{-1}z$, that is a fixed point for *A* (i.e. $A(r(x)) = r(x)$). Since $A|_{f^{-1}z}$ has only one fixed point, the points $r(x)$ coincide for all $x \in f^{-1}z$. Let *s*(*z*) denote the point *r*(*x*) for all $x \in f^{-1}z$. Now we have two mappings $r : X \to X$ and $s : Z \to X$. Note that

 $A(s(z)) = s(z), \quad z \in Z$

 $(\text{indeed}, A(s(z)) = A(r(x)) = r(x) = s(z) \text{ for any } x \in f^{-1}z);$

$$
f \circ s = id_Z;
$$

$$
r = s \circ f
$$

and $f|_{sZ}$ is one-to-one (and continuous).

Let us show that *r* is continuous.

Let $x \in X$, $\varphi(x) = \rho((x = A^0x), Ax)$ and $z = fx$.

As in the standard proof of the contraction mappings principle, for all $m, n \in \{0, 1, \ldots\}$, $m < n$,

$$
\rho(A^m x, A^n x) \le \varphi(x) \cdot (\beta(z))^m \frac{(\beta(z))^{n-m} - 1}{\beta(z) - 1}.
$$

Since ρ is a continuous function of the second variable,

$$
\rho(A^m x, r(x)) = \rho(A^m x, (s(fx) = s(z))) \le \varphi(x) \frac{(\beta(z))^m}{1 - \beta(z)}.
$$
\n(1)

Download English Version:

<https://daneshyari.com/en/article/4658527>

Download Persian Version:

<https://daneshyari.com/article/4658527>

[Daneshyari.com](https://daneshyari.com/)