

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Fiberwise contraction mappings principle

B.A. Pasynkov*

 $Moscow\ State\ University,\ Russia$

ARTICLE INFO

ABSTRACT

Available online 20 September 2014

MSC: primary 54H25

secondary 54E35, 54E50, 54C10, 54C65

Keywords:
Contraction mappings principle
Metric mapping
Fiberwise completeness
Quotient mapping
Map-morphism
Continuous section

Banach's contraction mappings principle is extended over metric mappings. © 2014 Published by Elsevier B.V.

Below a space means a topological space.

In this paper, Banach's contraction mappings principle will be extended from the case of metric spaces over the case of metric mappings.

Recall (see [1]) that a metric on a mapping f of a set X to a space (Z, θ) is a pseudometric ρ on X such that it is a metric on every fiber $f^{-1}z$ of f, $z \in Z$. The topology $\tau(f, \rho)$ on f generated by the metric ρ on f is the topology on X with the base $\tau_{\rho} \wedge f^{-1}\theta = \{U \cap f^{-1}O : U \in \tau_{\rho}, O \in \theta\}$, where τ_{ρ} is the topology on X generated by the pseudometric ρ .

A pair (f, ρ) consisting of a mapping f of a set to a space and of a metric ρ on f is called a *metric mapping*. Evidently, for every metric mapping (f, ρ) the mapping $f: (X, \tau(f, \rho)) \to Z$ is continuous. (Usually for any metric mapping $(f, \rho): X \to Z$, we shall consider X with the topology $\tau(f, \rho)$.) A metric mapping (f, ρ) is called *fiberwise complete* if ρ is a complete metric on every fiber of f.

For a continuous mapping $f: X \to Z$, a continuous mapping $A: X \to X$ is called a map-morphism $A: f \to f$ (of f to f) if $f \circ A = f$ (hence $A(f^{-1}z) \subset f^{-1}z$ for any $z \in Z$).

E-mail address: bpasynkov@gmail.com.

^{*} Correspondence to: Department of General Topology and Geometry, Mechanics and Mathematics Faculty, Moscow State University, 119899 Moscow, Russia.

For a metric mapping $f: X \to Z$, a map-morphism $A: f \to f$ is called β -contracting (\equiv a β -contraction) for a real-valued function $\beta(z), z \in Z$, if for any $z \in Z$ and any $x, x' \in f^{-1}z$,

$$0 \le \beta(z) < 1$$
 and $\rho(Ax, Ax') \le \beta(z) \cdot \rho(x, x')$.

Thus β -contracting map-morphism $A: f \to f$ is a $\beta(z)$ -contracting mapping of the fiber $f^{-1}z$ for any $z \in Z$.

Definition 1. Let we have a continuous mapping $f: X \to Z$. A map-morphism $r: X \to X$ will be called a *fiberwise retraction* (or an f-retraction) of X onto R = rX if r(x) = x for any $x \in R$. In this situation, R will be called a *fiberwise retract* (or an f-retract) of X.

Definition 2. For a continuous mapping $f: X \to Z$, a (not necessary continuous) mapping $s: Z \to X$ will be called a *retract section* of f if $f \circ s = id_Z$ and sZ is an f-retract of X. (Evidently, s is a one-to-one mapping of Z on sZ.)

For a continuous mapping $f: X \to Z$, a real-valued nonnegative function β on Z will be called *locally strongly 1-bounded* if for any $z \in Z$ there exist a neighbourhood Oz of z and a positive number $\gamma = \gamma(z) < 1$ such that $\beta(z') \leq \gamma$ for all $z' \in Oz$.

Theorem 1 (The weak fiberwise contraction mappings principle). Let we have a fiberwise complete metric onto mapping $f: X \to Z$ and let a map-morphism $A: f \to f$ be β -contracting for a locally strongly 1-bounded function $\beta(z), z \in Z$, then there exists a unique retract section $s: Z \to X$ of f such that sZ consists of all fixed points of the mapping $A: X \to X$ (hence $A \circ s = s$) and

$$(*) \rho(x, s(fx)) \le \rho(x, Ax) \cdot \frac{1}{1 - \beta(fx)}, \quad x \in X.$$

Proof. It follows from the standard proof of the theorem on contracting mappings of complete metric spaces and from the fiberwise completeness of f (and because A is a map-morphism) that for any $z \in Z$ and any $x \in f^{-1}z$ the sequence A^nx , $n = 0, 1, \ldots$, converges to a point $r(x) \in f^{-1}z$, that is a fixed point for A (i.e. A(r(x)) = r(x)). Since $A|_{f^{-1}z}$ has only one fixed point, the points r(x) coincide for all $x \in f^{-1}z$. Let s(z) denote the point r(x) for all $x \in f^{-1}z$. Now we have two mappings $r: X \to X$ and $s: Z \to X$. Note that

$$A(s(z)) = s(z), \quad z \in Z$$

(indeed, A(s(z)) = A(r(x)) = r(x) = s(z) for any $x \in f^{-1}z$);

$$f \circ s = id_Z;$$

$$r = s \circ f$$

and $f|_{sZ}$ is one-to-one (and continuous).

Let us show that r is continuous.

Let $x \in X$, $\varphi(x) = \rho((x = A^0x), Ax)$ and z = fx.

As in the standard proof of the contraction mappings principle, for all $m, n \in \{0, 1, ...\}$, m < n,

$$\rho(A^m x, A^n x) \le \varphi(x) \cdot (\beta(z))^m \frac{(\beta(z))^{n-m} - 1}{\beta(z) - 1}.$$

Since ρ is a continuous function of the second variable,

$$\rho(A^m x, r(x)) = \rho(A^m x, (s(fx) = s(z))) \le \varphi(x) \frac{(\beta(z))^m}{1 - \beta(z)}.$$
 (1)

Download English Version:

https://daneshyari.com/en/article/4658527

Download Persian Version:

https://daneshyari.com/article/4658527

Daneshyari.com