Infinite-dimensional hyperspaces of convex bodies of constant width

Lidiya Bazylevych ${ }^{\text {a }}$, Mykhailo Zarichnyi ${ }^{\text {b,c }}$

${ }^{\text {a }}$ Institute of Applied Mathematics and Fundamental Sciences, National University "Lviv Polytechnica",
5 Mytropolyta Andreya Str., 79013 Lviv, Ukraine
b Department of Mechanics and Mathematics, Lviv National University, Universytetska Str. 1, 79000 Lviv, Ukraine
${ }^{\text {c Faculty of Mathematics and Natural Sciences, University of Rzeszów, Al. Rejtana } 16 \text { A, }}$ 35-959 Rzeszów, Poland

A R T I C L E IN F O

Article history:

Received 27 February 2014
Accepted 5 July 2014
Available online 12 September 2014
In memory of Professor
Vitaly Fedorchuk

MSC:

52A20
54B20
57N20

Keywords:
Convexity
Constant width
Infinite-dimensional manifold

Abstract

There exists a natural embedding of the hyperspace of compact convex bodies of constant width in \mathbb{R}^{n} into those of \mathbb{R}^{n+1}. This allows us to consider the hyperspace of compact convex bodies of constant width in the space $\mathbb{R}^{\infty}=\underset{\longrightarrow}{\lim } \mathbb{R}^{n}$. We prove that this hyperspace is homeomorphic to $Q^{\infty}=\underset{\longrightarrow}{\lim } Q^{n}$, where Q denotes the Hilbert cube. © 2014 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

We consider the space \mathbb{R}^{n} endowed with the standard Euclidean metric d generated by the standard inner product $\langle\cdot, \cdot\rangle$.

Given a compact convex body $A \subset \mathbb{R}^{n}$, its support function $h_{A}: S^{n-1} \rightarrow \mathbb{R}$ is defined by the formula: $h_{A}(u)=\max \{\langle u, a\rangle \mid a \in A\}$. A compact convex body $A \subset \mathbb{R}^{n}$ is said to be a body of constant width $r>0$ if $\left|h_{A}(u)-h_{A}(-u)\right|=r$, for every unit vector u in \mathbb{R}^{n}. If A is a convex body of constant width r and $a \in \operatorname{bd} A$, we say that $b \in A$ is opposite to a whenever $d(a, b)=r$.

The convex bodies of constant width have many interesting properties and applications. There is a numerous literature devoted to geometry of such convex bodies (see, e.g., survey articles [6,11]).

[^0]http://dx.doi.org/10.1016/j.topol.2014.08.030
0166-8641/© 2014 Elsevier B.V. All rights reserved.

It seems natural to consider the convex bodies of constant width in infinite-dimensional spaces. The definition of these bodies can be easily extended over arbitrary Banach spaces (see, e.g., [13]). In this note, we define convex bodies of constant width in an infinite-dimensional space which seems to be one of the closest to the Euclidean spaces, namely, the direct limit of the spaces \mathbb{R}^{n}.

By $\exp X$ we denote the hyperspace (the set of all nonempty compact subsets) of a metric space X. Recall that the Hausdorff metric d_{H} on $\exp X$ is defined by the formula

$$
d_{H}(A, B)=\max \left\{\max _{x \in A} d(x, B), \max _{y \in B} d(y, A)\right\}
$$

The hyperspace of compact convex bodies of constant width is considered in [3] (see also [4]). One of the main results here (Theorem 1.1) states that this hyperspace is a contractible Hilbert cube manifold. This could be compared with the following result of Nadler, Quinn and Stavrakas [14, Theorem 7.3]: the hyperspace of compact convex bodies in $\mathbb{R}^{n}, n \geq 2$, is homeomorphic to the punctured Hilbert cube. In [1] it is remarked that the proof of the mentioned result in [4] contains a gap; fortunately, in [1] it is shown that this gap can be easily filled. Moreover, in [1] it is proved that the hyperspace of compact convex bodies of constant width in $\mathbb{R}^{n}, n \geq 2$, is homeomorphic to the product $Q \times \mathbb{R}^{n+1}$, where Q is the Hilbert cube.

The aim of the present note is to prove a counterpart of this result for the hyperspace of convex sets of constant width in the space $\mathbb{R}^{\infty}=\underset{\longrightarrow}{\lim } \mathbb{R}^{n}$ (see details below). To this end, we first consider a natural embedding of the hyperspace of compact convex bodies of constant width in \mathbb{R}^{n} into those of \mathbb{R}^{n+1}.

Given a nonempty subset $X \subset \mathbb{R}^{n}$, we define the circumsphere of X as the sphere of the smallest radius containing X. The radius of the circumsphere is called the circumradius of X. It is well known that every convex body of constant width $\leq r$ is of circumradius $\leq r$.

Recall that a convex body in $\mathbb{R}^{n}, n \geq 2$, is said to be strictly convex if its boundary does not contain a line segment.

Let $\bar{B}_{r}(x)$ (respectively $S_{r}(x)$) denote the closed ball (respectively sphere) of radius r centered at $x \in X$. Alternatively, a convex body A is of constant width r if $A-A=\bar{B}_{r}(0)$.

If A is a convex body of constant width $r>0$, then, for any $x \in \operatorname{bd} A$, there exists $y \in \operatorname{bd} A$ with $d(x, y)=r$; we say that y opposite x.

Let $r>0$. Following [12] we define $\Omega_{r}(X)=\bigcap\left\{\bar{B}_{r}(x) \mid x \in X\right\}$ and $\Omega_{r}^{2}(X)=\Omega_{r}\left(\Omega_{r}(X)\right)$.
We assume that every \mathbb{R}^{n} is embedded into \mathbb{R}^{n+1} as follows:

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}, 0\right)
$$

By \mathbb{R}^{∞} we denote the direct limit of the sequence

$$
\mathbb{R}^{1} \hookrightarrow \mathbb{R}^{2} \hookrightarrow \mathbb{R}^{3} \hookrightarrow \ldots
$$

Recall that $Q=[0,1]^{\omega}$ is the Hilbert cube. By Q^{∞} we denote the direct limit of the sequence

$$
Q \rightarrow Q \times\{0\} \hookrightarrow Q \times Q \rightarrow Q \times Q \times\{0\} \hookrightarrow Q \times Q \times Q \ldots
$$

Topological characterizations of the spaces \mathbb{R}^{∞} and Q^{∞} are obtained by K. Sakai [16]. It is known ([16, Theorem 2.6]; see also [10]) that the Q^{∞}-manifolds (as well as \mathbb{R}^{∞}-manifolds) are classified by their homotopy type. In particular, every contractible Q^{∞}-manifold is homeomorphic to Q^{∞}.

Recall that a map $f: X \rightarrow Y$ is called a Z-embedding if the set $f(X)$ is a Z-set in Y, i.e. the identity map 1_{Y} can be approximated by the maps whose images miss $f(X)$ (see, e.g., [17]).

We will need the following construction from [15]. Let W be any set of constant width λ and $p \notin W$. Let $W_{p}=W \cap \bar{B}_{\lambda}(p)$ and let W^{*} be a set of constant width λ containing $W_{p} \cup\{p\}$. The set W^{*} is called

https://daneshyari.com/en/article/4658531

Download Persian Version:

https://daneshyari.com/article/4658531

Daneshyari.com

[^0]: E-mail addresses: izar@litech.lviv.ua (L. Bazylevych), mzar@litech.lviv.ua (M. Zarichnyi).

