Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Cardinal invariants in locally T_i -minimal paratopological groups

Jing Zhang $^{\mathrm{a},*},$ Wei He $^{\mathrm{b}}$

^a School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, PR China
^b Institute of Mathematics, Nanjing Normal University, Nanjing 210046, PR China

ABSTRACT

ARTICLE INFO

Article history: Received 12 March 2014 Received in revised form 15 June 2014 Accepted 28 June 2014 Available online 8 July 2014

MSC: 54A25 54H11 54H13

$$\label{eq:keywords:} \begin{split} & Keywords: \\ & \text{Locally } T_i\text{-minimal paratopological} \\ & \text{groups} \\ & \text{Network weight} \\ & \text{Pseudocharacter} \\ & \pi\text{-Character} \end{split}$$

1. Introduction

In this paper, all spaces are assumed to be T_0 unless stated otherwise. Moreover, we assume that T_3 spaces are T_1 . The notations ω , $\psi(G)$ and $\chi(G)$ mark the set of all non-negative integers, the pseudocharacter and character of a space G, respectively. We denote by \mathbb{N} the set of natural numbers. The letter e will always denote the neutral element of a paratopological group. The readers may refer to [2,7] for notations and terminologies not explicitly given here.

Recall that a paratopological group is a group G with a topology such that the multiplication in G is jointly continuous. A paratopological group with a continuous inverse mapping is called a topological group.

A Hausdorff topological group (G, τ) is called minimal if there is no Hausdorff group topology on G which is strictly coarser than τ . Minimal topological groups have been studied in detail in [6,15]. One of the

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.topol.2014.06.012 \\ 0166-8641/© 2014 Elsevier B.V. All rights reserved.$

In this paper, cardinal invariants in locally T_i -minimal paratopological groups with i = 1, 2, 3 are studied. It mainly shows that: (1) If (G, τ) is a T_2 locally T_1 -minimal 2-oscillating paratopological group, then $\chi(G) = \pi\chi(G) \cdot inv(G)$; (2) Let (G, τ) be a locally T_1 -minimal paratopological group, then $\chi(G) = \psi(G) \cdot inv(G)$; (3) If (G, τ) is a locally T_2 -minimal paratopological group, then $\chi(G) = \psi(G) \cdot inv(G) \cdot Hs(G)$; (4) If (G, τ) is a locally T_3 -minimal paratopological group, then $\chi(G) = \psi(G) \cdot inv(G) \cdot Hs(G)$; (4) If (G, τ) is a locally T_3 -minimal paratopological group, then $\chi(G) = \psi(G) \cdot inv(G) \cdot Ir(G) \cdot Ir(G)$. These results generalize the corresponding results in [9] and also give positive answers to two questions posed by F.C. Lin in [9].

© 2014 Elsevier B.V. All rights reserved.

 $^{^{*}}$ Supported by the NSFC (No. 11171156) and the Project of Graduate Education Innovation of Jiangsu Province (No. CXZZ 12-0379) of China.

E-mail addresses: zhangjing86@126.com (J. Zhang), weihe@njnu.edu.cn (W. He).

generalizations of minimality of topological group is local minimality which was introduced by Morris and Pestov in [12]. A Hausdorff topological group (G, τ) is called locally minimal if there exists a neighborhood U of the neutral element e in (G, τ) such that U fails to be a neighborhood of e in any Hausdorff group topology on G which is strictly coarser than τ . For recent progress in this field see [3,4].

It is well known that paratopological groups are good generalizations of the category of topological groups. In the past few years, paratopological groups have been largely studied, for example, in [1,2,5,11]. Motivated by the idea of the (locally) minimal topological groups, I. Guan [8] defined the concept of the minimal Hausdorff paratopological groups and F.C. Lin introduced locally T_i -minimal paratopological groups with i = 0, 1, 2, 3, 3.5. Usually, no implication $T_i \Rightarrow T_j$ for i < j is valid in paratopological groups. This is why F.C. Lin introduced the concept of locally T_i -minimal paratopological groups. For i = 0, 1, 2, 3, 3.5, a T_i paratopological group (G, τ) is called locally T_i -minimal [9] if there exists a τ -neighborhood V of the neutral element e such that whenever $\sigma \leq \tau$ is a T_i -paratopological group topology on G such that V is a σ -neighborhood of e, then $\sigma = \tau$. A paratopological group is called locally minimal [9] if it is a locally T_i -minimal paratopological group for each i = 0, 1, 2, 3, 3.5.

Cardinal functions are interesting topics in the category of general topology. Many topologists have investigated cardinal invariants in topological groups and paratopological groups extensively. In [9], the author proved the following results:

Theorem 1.1. If (G, τ) is a regular locally T_1 -minimal Abelian paratopological group, then $\chi(G) = \psi(G)$.

Theorem 1.2. If (G, τ) is an Abelian locally T_3 -minimal paratopological group, then $\omega(G) = n\omega(G)$.

The following questions are posed in [9]:

Question 1.1. Is every countable locally T_3 -minimal paratopological group metrizable?

Question 1.2. Let G be a locally T_i -minimal paratopological group for i = 0, or i = 1, or i = 2, or i = 3, or i = 3.5. Does one have $n\omega(G) = \omega(G)$?

In this paper we will investigate the cardinal invariants in locally T_i -minimal paratopological groups with i = 1, 2, 3, in particular, we will give positive answers to the above Questions 1.1 and 1.2.

2. Preliminaries

T. Banakh and O. Ravsky in [5] introduce oscillator topology on a paratopological group. Given a paratopological topological group G let τ_b be the strongest group topology on G, weaker than the topology of G. Given a subset U of a group G, define the sets $(\pm U)^n$ and $(\mp U)^n$ by letting $(\pm U)^n = UU^{-1}U\cdots U^{(-1)^{n-1}}$, $(\mp U)^n = U^{-1}UU^{-1}\cdots U^{(-1)^n}$ for $n \in \omega$ and $(\pm U)^0 = (\mp U)^0 = \{e\}$. An *n*-oscillator on a paratopological group (G, τ) is a set of the form $(\pm U)^n$ for some neighborhood U of e in G.

For *n*-oscillator topology on a paratopological group (G, τ) we mean the topological space (G, τ_n) with τ_n consisting of sets $U \subset G$ such that for each $x \in U$ there is an *n*-oscillator $(\pm V)^n$ with $x \cdot (\pm V)^n \subset U$. In general, (G, τ_n) is not a paratopological group but it is a semitopological group, that is, τ_n makes the group operation on G separately continuous.

A paratopological group G has finite oscillation if there exists $n \in \mathbb{N}$ such that (G, τ_n) is a topological group. Let osc(G) be the smallest positive n such that (G, τ_n) is a topological group. We shall say that a paratopological group G is n-oscillating if $osc(G) \leq n$. In particular a 2-oscillating paratopological group means that the sets UU^{-1} where U is an open neighborhood of e in G form a neighborhood base at e in (G, τ_b) .

Download English Version:

https://daneshyari.com/en/article/4658543

Download Persian Version:

https://daneshyari.com/article/4658543

Daneshyari.com