

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A construction of the B-completion of a T_0 -quasi-metric space

Hans-Peter A. Künzi

 $Department\ of\ Mathematics\ and\ Applied\ Mathematics,\ University\ of\ Cape\ Town,\ Rondebosch\ 7701,\\ South\ Africa$

ARTICLE INFO

Article history: Received 5 January 2014 Received in revised form 26 March 2014 Accepted 26 March 2014

MSC: 54E15 54E55 54D35

06B23

 $Keywords: \\ T_0\text{-quasi-metric space} \\ \text{Injective hull} \\ q\text{-Hyperconvex} \\ \text{Doitchinov completion} \\ \text{Balanced} \\ \text{Cauchy filter pair} \\ \text{Dedekind-MacNeille completion} \\$

ABSTRACT

We present a construction of the B-completion of a T_0 -quasi-metric space (X,d) that is based on the injective hull of (X,d). The B-completion of a T_0 -quasi-metric space (X,d) is a T_0 -quasi-metric extension of (X,d) studied by H.-P.A. Künzi and C. Makitu Kivuvu.

In general, the B-completion of a T_0 -quasi-metric space is larger than the better known bicompletion of (X,d). In the special case of a balanced T_0 -quasi-metric space the B-completion coincides with a completion that was first investigated by D. Doitchinov.

Among other things, in this note we show that the B-completion of the natural T_0 -quasi-metric of a partially ordered set (possessing a smallest and a largest element) can be identified with the Dedekind–MacNeille completion of that partially ordered set.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Under the name of the B-completion H.-P.A. Künzi and C. Makitu Kivuvu developed a quasi-metric completion theory for an arbitrary T_0 -quasi-metric space [14,15]. The B-completion of a T_0 -quasi-metric space is sometimes helpful in cases where the bicompletion turns out to be unnaturally small. For instance, if we equip the set of the rationals with the usual Sorgenfrey T_0 -quasi-metric the corresponding space is bicomplete, while — more naturally — the B-completion of that space can be identified with the set of the reals equipped with the Sorgenfrey T_0 -quasi-metric [17, Example 5]. Applied to a balanced T_0 -quasi-metric space the B-completion indeed yields a completion that was introduced by Doitchinov [5,14] (compare also [6,16]).

E-mail address: hans-peter.kunzi@uct.ac.za.

The theory of the B-completion due to H.-P.A. Künzi and C. Makitu Kivuvu is "quasi-metric" and not "quasi-uniform" in the sense that two quasi-metrics may induce the same quasi-uniformity on a set, with one being B-complete, while the other is not (see [15, Example 6]).

Recently the injective hull (or q-hyperconvex hull) of a T_0 -quasi-metric space X was studied by various authors (see e.g. [9,12,22], and [7,11] for corresponding metric investigations). Categorically, that construction can be understood as a kind of Dedekind–MacNeille completion of T_0 -quasi-metric spaces (compare [1,22]). In particular the injective hull of a T_0 -quasi-metric space (X,d) contains the bicompletion of (X,d) as a subspace. Since there are obvious connections between Doitchinov's idea of completing T_0 -quasi-metric spaces and the Dedekind–MacNeille completion of partially ordered sets (compare e.g. [2,3] or Proposition 3 below), it is natural to wonder whether in fact the B-completion of a T_0 -quasi-metric space also sits inside its injective hull. In this note we shall verify that conjecture and illustrate some of the connections between the B-completion of T_0 -quasi-metric spaces and the Dedekind–MacNeille completion of partially ordered sets.

2. Preliminaries

In this section we recall some of the basic terminology used throughout this note.

Let X be a set and let $d: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of the non-negative reals. Then d is called a *quasi-pseudometric* on X if (a) d(x, x) = 0 whenever $x \in X$, and (b) $d(x, z) \leq d(x, y) + d(y, z)$ whenever $x, y, z \in X$.

We say that d is a T_0 -quasi-metric if d also satisfies the following condition: For each $x, y \in X$, d(x, y) = 0 = d(y, x) implies that x = y.

If we set, for $x, y \in X$, $x \leq_d y$, if and only if d(x, y) = 0, then \leq_d is the so-called *specialization partial* order of d.

By \mathcal{U}_d we shall denote the quasi-uniformity induced by d on X.

Furthermore for any $x \in X$, $\mathcal{U}_d(x)$ will denote the filter on X generated by the base $\{B_d(x,\epsilon): \epsilon > 0\}$ where $B_d(x,\epsilon) = \{y \in X: d(x,y) < \epsilon\}$, $\epsilon > 0$. For concepts from the theory of quasi-uniformities we refer the reader to [8,13].

Given two real numbers a and b we shall write a - b for $\max\{a - b, 0\}$. By \mathbb{N} we shall denote the set of natural numbers $\{1, 2, \ldots\}$.

Let d be a quasi-pseudometric on X, then $d^{-1}: X \times X \to [0, \infty)$ defined by $d^{-1}(x, y) = d(y, x)$ whenever $x, y \in X$ is also a quasi-pseudometric, called the *conjugate quasi-pseudometric of d*. Note that $d^s = \max\{d, d^{-1}\}$ is a metric if d is a T_0 -quasi-metric.

A map $f:(X,d) \to (Y,e)$ between two quasi-pseudometric spaces (X,d) and (Y,e) is called an *isometry* provided that e(f(x), f(y)) = d(x,y) whenever $x, y \in X$. Two quasi-pseudometric spaces (X,d) and (Y,e) will be called *isometric* provided that there exists a bijective isometry $f:(X,d) \to (Y,e)$.

Let $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ be two sequences in a set X. Moreover let $\mathcal{F}(x_n)$ be the filter generated by the filter base $\{\{x_k: k \geq n, k \in \mathbb{N}\}: n \in \mathbb{N}\}$ on X. Then we shall say that $\langle \mathcal{F}(x_n), \mathcal{F}(y_n) \rangle$ is the filter pair on X generated by the pair $\langle (x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}} \rangle$ of sequences in X.

Let $\mathcal{F} = \langle \mathcal{F}_1, \mathcal{F}_2 \rangle$ and $\mathcal{F}' = \langle \mathcal{F}'_1, \mathcal{F}'_2 \rangle$ be two filter pairs on a set X. Then $\langle \mathcal{F}_1, \mathcal{F}_2 \rangle$ is called *coarser* than $\langle \mathcal{F}'_1, \mathcal{F}'_2 \rangle$ provided that both $\mathcal{F}_1 \subseteq \mathcal{F}'_1$ and $\mathcal{F}_2 \subseteq \mathcal{F}'_2$.

¹ Following the notations of [14] resp. [12], in this paper a filter pair $\mathcal{F} = \langle \mathcal{F}_1, \mathcal{F}_2 \rangle$ will always be denoted as the pair $\langle \mathcal{F}_1, \mathcal{F}_2 \rangle$, while — somewhat inconsistently — a pair of functions $f = (f_1, f_2)$ will often be denoted by the single letter f.

Download English Version:

https://daneshyari.com/en/article/4658561

Download Persian Version:

https://daneshyari.com/article/4658561

<u>Daneshyari.com</u>