Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Topology and its Applications

www.elsevier.com/locate/topol

On non-metric continua that support Whitney maps

Michel Smith^a, Jennifer Stone^b

^a *Department of Mathematics, Auburn University, Auburn, AL 36849, United States* ^b *Lee Scott Academy, United States*

article info abstract

Article history: Received 12 April 2013 Received in revised form 11 February 2014 Accepted 18 February 2014

MSC: primary 54F15, 54D35 secondary 54B20

Keywords: Non-metric continua Whitney map Indecomposable continuum Perfectly normal

We discuss the construction of non-metric continua that support Whitney maps and their properties. We indicate a technique for producing non-metric indecomposable continua that support Whitney maps from certain compact totally disconnected spaces each of which allows a self-homeomorphism all of whose orbits are dense. These are non-metric examples that have the property that each proper subcontinuum is metric. Both perfectly normal and non-perfectly normal examples are constructed. We describe techniques for producing large collections of nonhomeomorphic continua that support Whitney maps. An example of a continuum every non-degenerate subcontinuum of which is non-metric that supports a Whitney map is constructed; an example of a continuum that does not support a Whitney map which is the union of two subcontinua each of which supports a Whitney map is constructed.

Published by Elsevier B.V.

1. Introduction

Suppose X is a topological space. Let 2^X denote the space of compact subsets of X with the Vietoris topology. We let $C(X)$ denote the subspace of 2^X consisting of the subcontinua of X. A Whitney map μ is a continuous function $\mu: 2^X \to \mathbb{R}$ that has the property that for $x \in X$, $\mu({x}) = 0$, and for $H \subsetneq K \in 2^X$, $\mu(H) < \mu(K)$. Suppose that *X* is a compact Hausdorff space that supports a Whitney map μ . Then the function $f: X \times X \to \mathbb{R}$ defined by $f(x, y) = \mu(\{x, y\})$ is continuous and identically 0 on the diagonal of $X \times X$ so, by the continuity of f, the diagonal is a G_{δ} set. So it follows from the result of Sneⁱder [\[9\]](#page--1-0) that *X* is metric. So a non-metric space does not support Whitney maps on its hyperspace 2^X . However, J. Charatonik and W. Charatonik [\[3\]](#page--1-0) gave an example of a non-metric continuum *X* and Whitney map that is restricted to the hyperspace $C(X)$. This example has the property that each of its proper subcontinua is metric. Based on an example of a continuum that appears to be homeomorphic to the continuum constructed by J. Charatonik and W. Charatonik, one of us [Stone] in her dissertation [\[10\]](#page--1-0) constructed a continuum

E-mail addresses: smith01@auburn.edu (M. Smith), jstone@lee-scott.org (J. Stone).

that has the property that also has the property and which we believe is homeomorphic to the example of J. Charatonik and W. Charatonik. We describe a technique for producing other continua with this property. The example of J. Charatonik and W. Charatonik appears to be perfectly normal and we construct examples of non-perfectly normal continua that support Whitney maps, including one each proper subcontinuum of which is metric. Furthermore we construct a continuum that supports a Whitney map each non-degenerate subcontinuum of which is non-metric. This continuum is not perfectly normal.

Definition. The continuum *X* is said to support a Whitney map on its set of subcontinua $C(X)$ if there is a continuous function $\mu : C(X) \to \mathbb{R}$ so that:

1. If $x \in X$ then $\mu({x})=0$;

2. If $H, K \in C(X)$ and $H \subsetneq K$ then $\mu(H) < \mu(K)$.

In this paper, if *X* is non-metric then the statement "*X* supports a Whitney map" will mean that *X* supports a Whitney map on $C(X)$. Extensive discussions of Whitney maps in the metric setting is available in Nadler [\[7\].](#page--1-0)

2. Construction of non-metric continua that support Whitney maps

Definition. Let $F: Z \to Z$ be a function, then F is said to have the *block permutation property* means that for each non-empty open set $U \subset Z$ and $t \in U$ there is an open set S with $t \in S \subset U$ and an integer N_S so that ${F^n(S)}_{n=0}^{N_S}$ is a disjoint collection of open sets covering *Z*.

Construction 1. Suppose that *Z* is an infinite compact totally disconnected Hausdorff space and $F : Z \to Z$ is a homeomorphism that has the block permutation property. Suppose further that *I* is a Hausdorff arc with end points *a* and *b*, $X = Z \times I$ and that *G* is the upper semi-continuous decomposition of X that identifies the points (z, b) with the point $(F(z), a)$. Then let *Y* denote the decomposition space $Y = X/G$.

This example produces an analogue of the metric solenoid in the case that *Z* is non-metric. We state and prove some of the properties of *Y* . The fact that the collection *G* is indeed an upper semi-continuous decomposition *X* follows from the fact that *Y* is a compact Hausdorff space, *F* is a homeomorphism and each element of *G* is compact.

For ease of notation we will suppress the collection *G* for the following proofs. Thus, in the case that *I* is the unit interval with end points $a = 0$ and $b = 1$, we will let $\{\{(F^{-1}(z), b), (z, a)\}, \{(z, b), (F(z), a)\}\}\cup$ $({z} \times (I - {a,b}))$ be denoted by ${z} \times [0,1]$ with the identifications of *G* understood.

The specific resultant space *Y* will depend on our choices for *Z* and *F*. For any *Y* constructed according to Construction 1 we have the following properties.

Property 1. For each $t \in Z$ the set $\{F^n(t)\}_{n=0}^{\infty}$ is dense in *Z*.

Proof. Let $t \in Z$ and let O be an open set intersecting Z. Then by hypotheses there is a clopen set S and integer N_S with $z \in S \subset O$ so that $\{F(S)\}_{i=0}^{N_S}$ is a collection of disjoint clopen sets that covers *Z*. Based on the construction details, note that for the set *S* required by the definition of the block permutation property we have, $F^{N_S+1}(S) = S$. Then for some integer $n, t \in F^n(S)$. Then since F permutes the elements of $\{F(S)\}_{i=0}^{N_S}$ there is an integer *k* so that $F^{n+k}(S) = S$. Thus $F^{n+k}(t) \in S \subset O$. \Box

If *F* permutes the elements of $\{F(S)\}_{i=0}^{N_S}$ then so does F^{-1} so we have the following:

Corollary 1. For each $t \in Z$ the set $\{F^{-n}(t)\}_{n=0}^{\infty}$ is dense in Z .

Download English Version:

<https://daneshyari.com/en/article/4658564>

Download Persian Version:

<https://daneshyari.com/article/4658564>

[Daneshyari.com](https://daneshyari.com)