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We discuss the construction of non-metric continua that support Whitney maps and
their properties. We indicate a technique for producing non-metric indecomposable
continua that support Whitney maps from certain compact totally disconnected
spaces each of which allows a self-homeomorphism all of whose orbits are
dense. These are non-metric examples that have the property that each proper
subcontinuum is metric. Both perfectly normal and non-perfectly normal examples
are constructed. We describe techniques for producing large collections of non-
homeomorphic continua that support Whitney maps. An example of a continuum
every non-degenerate subcontinuum of which is non-metric that supports a Whitney
map is constructed; an example of a continuum that does not support a Whitney
map which is the union of two subcontinua each of which supports a Whitney map
is constructed.

Published by Elsevier B.V.

1. Introduction

Suppose X is a topological space. Let 2X denote the space of compact subsets of X with the Vietoris
topology. We let C(X) denote the subspace of 2X consisting of the subcontinua of X. A Whitney map μ is
a continuous function μ : 2X → R that has the property that for x ∈ X, μ({x}) = 0, and for H � K ∈ 2X ,
μ(H) < μ(K). Suppose that X is a compact Hausdorff space that supports a Whitney map μ. Then the
function f : X × X → R defined by f(x, y) = μ({x, y}) is continuous and identically 0 on the diagonal
of X × X so, by the continuity of f , the diagonal is a Gδ set. So it follows from the result of Šněıder [9]
that X is metric. So a non-metric space does not support Whitney maps on its hyperspace 2X . However,
J. Charatonik and W. Charatonik [3] gave an example of a non-metric continuum X and Whitney map that
is restricted to the hyperspace C(X). This example has the property that each of its proper subcontinua is
metric. Based on an example of a continuum that appears to be homeomorphic to the continuum constructed
by J. Charatonik and W. Charatonik, one of us [Stone] in her dissertation [10] constructed a continuum
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that has the property that also has the property and which we believe is homeomorphic to the example of
J. Charatonik and W. Charatonik. We describe a technique for producing other continua with this property.
The example of J. Charatonik and W. Charatonik appears to be perfectly normal and we construct examples
of non-perfectly normal continua that support Whitney maps, including one each proper subcontinuum of
which is metric. Furthermore we construct a continuum that supports a Whitney map each non-degenerate
subcontinuum of which is non-metric. This continuum is not perfectly normal.

Definition. The continuum X is said to support a Whitney map on its set of subcontinua C(X) if there is
a continuous function μ : C(X) → R so that:

1. If x ∈ X then μ({x}) = 0;
2. If H,K ∈ C(X) and H � K then μ(H) < μ(K).

In this paper, if X is non-metric then the statement “X supports a Whitney map” will mean that X

supports a Whitney map on C(X). Extensive discussions of Whitney maps in the metric setting is available
in Nadler [7].

2. Construction of non-metric continua that support Whitney maps

Definition. Let F : Z → Z be a function, then F is said to have the block permutation property means that
for each non-empty open set U ⊂ Z and t ∈ U there is an open set S with t ∈ S ⊂ U and an integer NS so
that {Fn(S)}NS

n=0 is a disjoint collection of open sets covering Z.

Construction 1. Suppose that Z is an infinite compact totally disconnected Hausdorff space and F : Z → Z

is a homeomorphism that has the block permutation property. Suppose further that I is a Hausdorff arc
with end points a and b, X = Z × I and that G is the upper semi-continuous decomposition of X that
identifies the points (z, b) with the point (F (z), a). Then let Y denote the decomposition space Y = X/G.

This example produces an analogue of the metric solenoid in the case that Z is non-metric. We state
and prove some of the properties of Y . The fact that the collection G is indeed an upper semi-continuous
decomposition X follows from the fact that Y is a compact Hausdorff space, F is a homeomorphism and
each element of G is compact.

For ease of notation we will suppress the collection G for the following proofs. Thus, in the case that I

is the unit interval with end points a = 0 and b = 1, we will let {{(F−1(z), b), (z, a)}, {(z, b), (F (z), a)}} ∪
({z} × (I − {a, b})) be denoted by {z} × [0, 1] with the identifications of G understood.

The specific resultant space Y will depend on our choices for Z and F . For any Y constructed according
to Construction 1 we have the following properties.

Property 1. For each t ∈ Z the set {Fn(t)}∞n=0 is dense in Z.

Proof. Let t ∈ Z and let O be an open set intersecting Z. Then by hypotheses there is a clopen set S and
integer NS with z ∈ S ⊂ O so that {F (S)}NS

i=0 is a collection of disjoint clopen sets that covers Z. Based
on the construction details, note that for the set S required by the definition of the block permutation
property we have, FNS+1(S) = S. Then for some integer n, t ∈ Fn(S). Then since F permutes the elements
of {F (S)}NS

i=0 there is an integer k so that Fn+k(S) = S. Thus Fn+k(t) ∈ S ⊂ O. �
If F permutes the elements of {F (S)}NS

i=0 then so does F−1 so we have the following:

Corollary 1. For each t ∈ Z the set {F−n(t)}∞n=0 is dense in Z.
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