Generalization of sequences and convergence in metric spaces

Abstract

Alexey Ostrovsky

A R T I C L E I N F O

Article history:
Received 26 July 2013
Received in revised form 19 April 2014
Accepted 22 April 2014
Available online 6 May 2014

$M S C$:

primary $26 \mathrm{~A} 21,54 \mathrm{C} 10$
secondary 54C08, 28A20
Keywords:
Sequence
Open
Closed
Continuous
Decomposition of functions

Abstract

Adding to the previous results by the author and using some generalization of sequences, we study a special case of countable decomposability of functions: representation of functions as open, closed and continuous ones with the possible exception of countably many points.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As we have shown in [1-3], the functions that take open or closed sets into a combination of n open or closed sets for $n=2$ are decomposable into countably many closed, open and continuous functions.

In this paper we will be focusing on an important special case of countable decomposability of functions: representation of functions as open, closed or continuous ones with the possible exception of countably many points.

We will use countable compact sets $S_{n}(y)$ and their subsets as a generalization of sequences in metrizable spaces.

1.1. Countable compact sets $S_{n}(y)$

We will denote by $S_{n}(y)$ a standard countable compact subset of a space Y such that its n-th derived set $\left(S_{n}(y)\right)^{n}$ is a singleton of y. We denote by $I_{n}(y)$ the set of isolated points of $S_{n}(y)$.

[^0]In particular, $I_{1}(y)=\left\{y_{k}\right\}_{k=1}^{\infty}$ such that $y_{k} \rightarrow y$ as $k \rightarrow \infty$; and

$$
S_{1}(y)=\{y\} \cup\left\{y_{k}\right\}
$$

is a standard sequence with its limit point, and $I_{2}(y)=\left\{y_{k, n}\right\}_{n=1}^{\infty}$ such that $y_{k, n} \rightarrow y_{k}$ as $k \rightarrow \infty$, and

$$
S_{2}(y)=\{y\} \cup\left\{y_{k}\right\} \cup\left\{y_{k, n}\right\}
$$

1.2. Binary classes A_{n} and M_{n}

Starting from classes A_{1} and M_{1} of open sets and closed sets lying in a metric space, we define the following additive and multiplicative classes:

$$
A_{n}=\left\{A \cup B: A \in M_{n-1}, B \in A_{n-1}\right\}
$$

and

$$
M_{n}=\left\{A \cap B: A \in M_{n-1}, B \in A_{n-1}\right\}
$$

By definition, the elements of classes A_{n} and M_{n}, called A_{n}-sets and M_{n}-sets, form a class B_{n}. Obviously, $\emptyset \in B_{n}$ and $B_{n} \subset B_{n+1}$.

We say that $f: X \rightarrow Y$ is open- B_{n} (resp., closed- B_{n}) iff the image of every open (resp., closed) subset is a B_{n}-set.

We say that a function $f: X \rightarrow Y$ is B_{n}-measurable iff the preimage of every open subset is a B_{n}-set. In this case f^{-1} is a (multivalued) open- B_{n} function. Below we will consider only single-valued functions.

Continuous (resp., open, closed) functions are A_{1}-measurable (resp., open- A_{1}, closed- M_{1}). Their countable characteristics in terms of $S_{1}(y)$ are well known. For example, a function $f: X \rightarrow Y$ is continuous iff one of the following equivalent conditions holds:

- for each open set $U \subset Y$, its preimage $f^{-1}(U)$ is an A_{1}-set in X;
- for each closed set $F \subset Y$, its preimage $f^{-1}(F)$ is an M_{1}-set in X;
- for each $S_{1}(x) \subset X, f(x) \in c l_{Y} f\left(I_{1}(x)\right)$.

2. s_{2}-Functions

We will consider a standard base \mathcal{B} of a zero-dimensional metric space X : this is any base \mathcal{B} consisting of clopen subsets such that, for any set F and $n \in \mathbb{N}^{+}$, the family $\{V \in \mathcal{B}: V \cap F \neq \emptyset, \operatorname{diam}(V)>1 / n\}$ is finite.

Obviously, each subspace of the Cantor set \mathbf{C} has a standard base.
In this section, we generalize the notions of closed, open and continuous functions with the use of $S_{2}(x)$-sets.

2.1. s_{2}-Continuous functions

A function $f: X \rightarrow Y$ is said to be s_{n}-continuous if, for any $S_{n}(x) \subset X, f(x)$ is a limit point of $f\left(I_{n}(x)\right)$. It is obvious that a function is continuous iff it is s_{1}-continuous.

Theorem 1. Let $f: X \rightarrow Y$ be an s_{2}-continuous function between $X, Y \subset \mathbf{C}$. Then there exists a countable set $Y_{0} \subset Y$ such that the restriction $f \mid\left(X \backslash f^{-1}\left(Y_{0}\right)\right)$ is continuous.

https://daneshyari.com/en/article/4658608

Download Persian Version:
https://daneshyari.com/article/4658608

Daneshyari.com

[^0]: E-mail address: alexei.ostrovski@gmx.de.
 $U R L:$ https://www.researchgate.net/profile/Alexey_Ostrovsky/.
 http://dx.doi.org/10.1016/j.topol.2014.04.012
 0166-8641/© 2014 Elsevier B.V. All rights reserved.

