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The topological space X is a pseudo-solenoid if X is a hereditarily indecomposable,
non-chainable, and circle-like continuum. It is shown that no such continuum is
continuously homogeneous. Specifically, there are two points in X, identified as z
and 1, such that for any continuous surjection f : X → X, f(1) �= z. This answers
a question of J.J. Charatonik in the negative.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A continuum X is a compact and connected metric space. A continuum is circle-like (resp. arc-like or
chainable) if it is homeomorphic to an inverse limit of circles (resp. arcs). A continuum X is indecomposable
if X is not the union of two proper subcontinua of X; X is hereditarily indecomposable, if each subcontinuum
of X is indecomposable. Knaster constructed the first example of a hereditarily indecomposable continuum
in 1922 [23]. In 1948 Moise constructed an example of a continua, which was hereditarily indecomposable,
to answer a question of Mackiewicz [33]. Later that same year, Bing constructed an example similar to
Moise’s to answer a question of Knaster and Kuratowski [6]. In 1951, Bing showed that all nondegenerate,
chainable, and hereditarily indecomposable continua are equivalent up to homeomorphism [7]. From this,
it followed that the examples constructed by Knaster, Moise, and Bing are the same space. This space is
called the pseudo-arc.
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A continuum is a pseudo-solenoid if it is not chainable, circle-like, and hereditarily indecomposable.
The pseudo-circle refers to the topologically unique pseudo-solenoid embeddable in the plane [16]. It is the
first example of a pseudo-solenoid, and it was constructed by Bing as an example of a continuum that
is hereditarily indecomposable and plane separating [7]. Pseudo-circles and pseudo-solenoids have been of
interest in continuum theory since their inception in the literature. They are relatively simple examples
of hereditarily indecomposable continua (for recent results see [4,5,9,10,17]). Handel’s work [20] showed
the pseudo-circle can result as a strange attractor of a smooth diffeomorphism of the plane. Since then
dynamicists have taken interest in the pseudo-circle as an invariant set. Among those, Kennedy and Yorke
showed that a diffeomorphism with invariant pseudo-circle need not be pathological [22].

A topological space X is homogeneous if for each x, y ∈ X there is a homeomorphism h : X → X

with h(x) = y, or equivalently, X has one orbit under the action of its homeomorphism group. Bing and
Moise independently showed that the pseudo-arc is homogeneous [6,34] (for a survey of various homogene-
ity properties of the pseudo-arc see [29,30]). Bing asked if the pseudo-circle is homogeneous as well [7].
Bing’s question was answered independently by Fearnley and Rogers, each of whom demonstrated that the
pseudo-circle (and every pseudo-solenoid) is not homogeneous [15,39]. Since then, the same result has been
obtained using other methods, first by Hagopian [18], using fixed point properties and a theorem of Effros.
Subsequent proofs by other authors include two additional proofs by Rogers [41,42], a proof by Lewis [28],
and a proof by Kuperberg and Gammon [26]. An interesting extension of this result is due to Kennedy
and Rogers [21], who use a theorem of Hagopian to show that the pseudo-circle has uncountably many
orbits under the action of its homeomorphism group. Moreover, they also show that each orbit contains
uncountably many composants using a technique of Lewis [27]. Recall that two points of an indecomposable
continuum X are in the same composant if there is a proper subcontinuum of X that contains both points.

In this paper we will refer to a continuous function as a map; a self-map of a topological space X is a map
with X as both the domain and codomain. In the early 1970s, J.J. Charatonik proposed a generalization of
topological homogeneity of a topological space X with respect to a class of self-maps of X. A topological
space X is C-homogeneous, where C is a class of self-maps of X, if for any x, y ∈ X, there is a surjection
f ∈ C such that f(x) = y. Thus, X is homogeneous in the conventional sense, if C is the class of all
homeomorphisms of X. If C is the class of all continuous (resp. open or monotone) maps of X, then X is
called continuously (resp. openly or monotonically) homogeneous.

Charatonik showed interest in the classes of open and monotone maps of a space and showed that a
nondegenerate arc-like continuum is openly homogeneous if and only if it is the pseudo-arc [11], which
generalizes a characterization of Bing [8]. Similarly, Prajs generalized a result of Hagopian [19] by showing
that the only class of nondegenerate, openly homogeneous, circle-like continua, with all nondegenerate
proper subcontinua being arcs, is in fact the class of solenoids [35]. The question thus posed by Charatonik
was whether open-homogeneity is equivalent to homogeneity for continua (Question 1 in [12,13]).

Approximately 15 years later the above question of Charatonik was answered in the negative, with inde-
pendent results by Prajs and Seaquist [36,37,43,44]. Starting with the Sierpiński universal plane curve, which
Krasinkiewicz originally proved as having two orbits under the action of its homeomorphism group [24],
Prajs and Seaquist each constructed a continuous decomposition of this continuum. It was observed that
for either orbit of the Sierpiński curve, there is a point whose preimage under the quotient map intersects
both orbits. Hence, the continuum is openly (and monotonically) homogeneous via a homeomorphism com-
posed with the quotient map. However, before these results, Charatonik proposed the pseudo-circle as a
possible counterexample, and he remained interested in the question of whether the pseudo-circle is openly
(or continuously) homogeneous even after the aforementioned results of Prajs and Seaquist [12]. In his 2006
(English translation) biographical article on Charatonik, Krupski mentions this problem explicitly (see [25,
p. vii]).

The various constructions of the pseudo-circle closely resemble those of the pseudo-arc, and it is easily
observed that every proper subcontinuum of a pseudo-circle is a pseudo-arc. Moreover, the surjective self-
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