Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Selections, paraconvexity and PF-normality $\stackrel{\Rightarrow}{\sim}$

Narcisse Roland Loufouma Makala

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

ARTICLE INFO

MSC: primary 54C60, 54C65 secondary 54D15

Keywords: Set-valued mapping Lower semi-continuous Selection Paraconvexity PF-normal space

ABSTRACT

We prove a selection theorem for paraconvex-valued mappings defined on τ -PF normal spaces. The method developed to prove this result is used to provide a general approach to such selection theorems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let X and Y be topological spaces, and let 2^{Y} be the family of all non-empty subsets of Y. Also, let

 $\mathscr{F}(Y) = \{ S \in 2^Y : S \text{ is closed} \}$ and $\mathscr{C}(Y) = \{ S \in \mathscr{F}(Y) : S \text{ is compact} \}.$

A set-valued mapping $\varphi: X \to 2^Y$ is *lower semi-continuous*, or *l.s.c.*, if the set

$$\varphi^{-1}(U) = \left\{ x \in X \colon \varphi(x) \cap U \neq \emptyset \right\}$$

is open in X for every open $U \subset Y$. A single-valued mapping $f: X \to Y$ is a selection for $\varphi: X \to 2^Y$ if $f(x) \in \varphi(x)$ for every $x \in X$.

Let Y be a normed space. Throughout this paper, we will use d to denote the metric on Y generated by the norm of Y. Following [9], a subset P of Y is called α -paraconvex, where $0 \leq \alpha \leq 1$, if whenever r > 0and d(p, P) < r for some $p \in Y$, then

 $d(q, P) \leq \alpha r$ for all $q \in \operatorname{conv}(B_r(p) \cap P)$.

E-mail address: roland@aims.ac.za.

 $\label{eq:http://dx.doi.org/10.1016/j.topol.2014.02.042 \\ 0166-8641/ © 2014$ Elsevier B.V. All rights reserved.

 $^{^{\,\}pm}\,$ The work of the author is based upon research supported by the College of Agriculture, Engineering and Science of the University of KwaZulu-Natal, South Africa.

Here, $B_r(x) = \{y \in Y : d(x, y) < r\}$, and conv(A) is the *convex hull* of A. The set P is called *paraconvex* if it is α -paraconvex for some $\alpha < 1$. A closed set is 0-paraconvex if and only if it is convex.

In the sequel, τ will denote an infinite cardinal number, and w(Y) — the topological weight of the space Y. Also, we will use $\mathscr{C}'(Y) = \mathscr{C}(Y) \cup \{Y\}$.

In [8], E. Michael proved that if X is paracompact and Y is a Banach space, then every l.s.c. convex-valued mapping $\varphi : X \to \mathscr{F}(Y)$ has a continuous selection (see [8, Theorem 3.2"]). In [9], E. Michael generalized this result by replacing "convexity" with " α -paraconvexity" for a fixed $\alpha < 1$ (see [9, Theorem 2.1]); this generalization remains valid for τ -paracompact normal spaces, see [6, Theorem 3.2]. P.V. Semenov generalized Michael's paraconvex-valued selection theorem by replacing the constant α with a continuous function $f : (0, \infty) \to [0, 1)$ satisfying a certain property called (*PS*) (functional paraconvexity, see [22]); and D. Repovš and P.V. Semenov considered in [14] a function $\alpha_P : (0, \infty) \to [0, 2)$ (called the function of nonconvexity) associated to each nonempty subset $P \subset Y$, see [14,22] for the definition of these concepts. Also, they obtained several applications of selections for paraconvex-valued mappings, see [15–19,23] and the monograph [20]. The author has recently proved a τ -collectionwise normal version of these results, i.e. when X is τ -collectionwise normal, Y is a Banach space with $w(Y) \leq \tau$, and φ is α -paraconvex- and $\mathscr{C}'(Y)$ -valued [6, Theorem 2.1]. Let us explicitly remark that the proofs of these theorems utilize the fact that τ -paracompactness and τ -collectionwise normality are hereditary with respect to closed subsets.

We are now ready to state also the main purpose of this paper. Namely, we prove a paraconvex-valued selection theorem for $\mathscr{C}(Y)$ -valued mappings defined on τ -PF-normal spaces (Corollary 3.3), see Section 3 for the definitions of these spaces. The challenge in this particular case is that τ -PF-normality is not hereditary with respect to closed subsets, hence the method used for the τ -collectionwise normal spaces in [6] cannot be applied straightforward; the rest of the arguments are similar. In fact, using the property of mappings discussed in the next section, we prove a slightly more general result (Theorem 3.1) and derive from a common point of view all previous known results of paraconvex-valued selection theorems for l.s.c. mappings (see Examples 2.2 and 2.3).

2. The Dense Multi-selection Property

For $\varepsilon > 0$, a single-valued mapping $g: X \to Y$ to a metric space (Y, d) is an ε -selection for $\varphi: X \to 2^Y$, if $d(g(x), \varphi(x)) < \varepsilon$, for every $x \in X$. Also, a set-valued mapping $\psi: X \to 2^Y$ is called a *set-valued selection* (or a *multi-selection*) for another set-valued mapping $\varphi: X \to 2^Y$ if $\psi(x) \subset \varphi(x)$, for every $x \in X$. We shall say that a mapping $\varphi: X \to 2^Y$ has the *Dense Multi-selection Property*, or *DMP* for short, where (Y, d) is a metric space, if the following hold:

- (i) φ has an l.s.c. multi-selection $\psi: X \to \mathscr{C}(Y)$.
- (*ii*) For every $\varepsilon > 0$, a cozero-set $U \subset X$, and a continuous ε -selection $g: U \to Y$ for $\varphi \upharpoonright U$, there exists an l.s.c. $\psi: U \to \mathscr{C}(Y)$ such that

$$\psi(x) \subset \overline{\varphi(x) \cap B_{\varepsilon}(g(x))}, \quad x \in U.$$

We may consider open balls $B_{\varepsilon}(y)$ when $\varepsilon = \infty$. Thus, $B_{\infty}(y) = Y$, and the DMP of $\varphi : X \to 2^Y$ can be simply expressed by saying that for every $0 < \varepsilon \leq \infty$, a cozero-set $U \subset X$, and a continuous ε -selection $g: U \to Y$ for $\varphi \upharpoonright U$, there exists an l.s.c. $\psi: U \to \mathscr{C}(Y)$ such that $\psi(x) \subset \overline{\varphi(x) \cap B_{\varepsilon}(g(x))}, x \in U$.

Remark 2.1. In the realm of normal spaces, cozero-sets coincide with open F_{σ} -sets. So, if X is normal, $U \subset X$ is an open F_{σ} -set, and $\varphi : X \to \mathscr{F}(Y)$ has the DMP, then $\varphi \upharpoonright U$ will automatically have the DMP.

Download English Version:

https://daneshyari.com/en/article/4658651

Download Persian Version:

https://daneshyari.com/article/4658651

Daneshyari.com