

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Strong quasi-continuity of set-valued functions

Alireza Kamel Mirmostafaee

Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

ARTICLE INFO

Article history: Received 30 November 2012 Received in revised form 16 August 2013 Accepted 30 December 2013

MSC: 54C05 54C60 54C08 54E52

54C99

Keywords: Quasi-continuity Set-valued function Topological games

ABSTRACT

By means of topological games, we will show that under certain circumstances on topological spaces X, Y and Z, every two variable set-valued function $F: X \times Y \to Z^Z$ is strongly upper (resp. lower) quasi-continuous provided that F_x is upper (resp. lower) semi-continuous and F^y is lower (resp. upper) quasi-continuous. Moreover, we will prove that if F is compact-valued and Z is second countable, then for each $y_0 \in Y$, there is a dense G_δ subset D of X such that F is upper (resp. lower) semi-continuous at each point of $D \times \{y_0\}$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The notion of quasi-continuity is due to Volterra [1], who observed that every separately continuous function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is quasi-continuous. Later on Kempisty [11] formulated the definition of quasi-continuity for real functions. Kempisty's ideas have been used in the investigation of the continuity points of functions of two variables which are quasi-continuous in one variable and continuous in the other one [2,3,12,14,18]. Among them there is the following.

Theorem 1.1. ([17, Theorem 1]) Let X be a Baire space, Y be first countable and Z be regular. If $f: X \times Y \to Z$ is a function such that all its x-sections f_x are continuous and all its y-sections f^y are quasi-continuous, then f is strongly quasi-continuous.

In 1976, G. Gruenhage [9] introduced a class of topological spaces, called W-spaces, which contains the class of all first countable spaces. It is known that Piotrowski's result can be generalized to the case when Y is a W-space [15].

E-mail address: mirmostafaei@ferdowsi.um.ac.ir.

In 1975, Popa [19] generalized the notion of quasi-continuity for set-valued functions. Since then, some authors investigated various types of continuity of two variable set-valued functions [5,7,8]. In particular, T. Neubrunn proved the following.

Theorem 1.2. ([16, Theorems 2 and 4]) Let X be a Baire space, Y second countable and Z normal (resp. regular). Let $F: X \times Y \to 2^Z$ be a function such that for each $(x,y) \in X \times Y$, F_x is upper (resp. lower) quasi-continuous and F^y is both lower and upper quasi-continuous. Then F is upper (resp. lower) quasi-continuous.

In this paper, we define a notion for strong upper and lower quasi-continuity of a two variable set-valued function. We apply a topological game argument to give a partial extension of the above results. More precisely, we will show that if X is a Baire space, Y is a W-space and Z is a normal (resp. regular) T_1 -space, then $F: X \times Y \to 2^Z$ is strongly upper (resp. lower) quasi-continuous provided that F_x is upper (resp. lower) semi-continuous and F^y is lower (resp. upper and lower) quasi-continuous.

We also give an example to show that upper and lower strong quasi-continuity of a set-valued function does not imply strong quasi-continuity. However, when Z is second countable, we will prove that for any function $F: X \times Y \to 2^Z$ which is both upper and lower strong quasi-continuous and $y_0 \in Y$, there is a residual subset D of X such that F is quasi-continuous at each point of $D \times \{y_0\}$.

Let $C_u(F)$ (resp. $C_l(F)$) denote the set of all upper (resp. lower) semi-continuous points of a set-valued function F. The following result is due to J. Evert and T. Lipski.

Theorem 1.3. ([6, Theorems 15 and 16]) Let X be a topological space and Z be a second countable space. Suppose that $F: X \to 2^Z$ is a non-empty compact valued upper (resp. lower) quasi-continuous function. Then $X \setminus C_u(F)$ (resp. $X \setminus C_l(F)$) is of the first category.

We will give a partial extension of the above result by showing that if $F: X \times Y \to 2^Z$ is compact-valued strongly upper (resp. lower) quasi-continuous function and Z is second countable, then for every $y_0 \in Y$, we can find a residual subset D of X such that F is upper (resp. lower) semi-continuous at each point of $D \times \{y_0\}$. In particular, when X is a Baire space, D is a dense G_δ subset of X.

2. Preliminaries

Throughout this paper, we will assume that X, Y and Z are topological spaces. Let us start this section by introducing the following topological games.

The Banach–Mazur game $\mathcal{BM}(X)$ is a topological game played by two players α and β as follows. Player β starts a game by selecting a nonempty open set U_1 of X; then player α chooses a non-empty open set $V_1 \subset U_1$. When (U_i, V_i) , $1 \leq i \leq n-1$, have been defined, player β picks a nonempty open set $U_n \subset V_{n-1}$ and α answers by selecting a nonempty open set $V_n \subset U_n$. The player α wins the play $(U_i, V_i)_{i\geqslant 1}$ if $(\bigcap_{n=1}^{\infty} V_n) \neq \emptyset$. Otherwise, the player β is said to have won the play.

By a strategy for one of the players, we mean a rule that specifies each move of the player. We say that the player α has a winning strategy for the game $\mathcal{BM}(X)$ if there exists a strategy s, such that α wins all plays provided that he/she acts according to the strategy s. In this case, we say that X is an α -favorable space. It is known that X is a Baire space if and only if the player β does not have a winning strategy in the game $\mathcal{BM}(X)$ (see e.g. [20, Theorems 1 and 2]). Therefore every α -favorable space X is a Baire space, however, the converse is not true in general. The interested reader is referred to [4,10,21,22] for further information.

The following game was introduced by G. Gruenhage [9] to define a class of topological spaces which strictly contains all first countable topological spaces.

Download English Version:

https://daneshyari.com/en/article/4658669

Download Persian Version:

https://daneshyari.com/article/4658669

<u>Daneshyari.com</u>