

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Ultrafilters on metric spaces

I.V. Protasov

Department of Cybernetics, Kyiv University, Volodimirska 64, 01033 Kyiv, Ukraine

ARTICLE INFO

Article history: Received 13 August 2013 Received in revised form 24 December 2013 Accepted 8 January 2014

MSC: 54E15 54D35 22A15

Keywords:
Ultrafilter
Metric space
Ballean
Parallel equivalence
Ultracompanion

ABSTRACT

Let X be an unbounded metric space, $B(x,r) = \{y \in X : d(x,y) \leq r\}$ for all $x \in X$ and $r \geq 0$. We endow X with the discrete topology and identify the Stone–Čech compactification βX of X with the set of all ultrafilters on X. Our aim is to reveal some features of algebra in βX similar to the algebra in the Stone–Čech compactification of a discrete semigroup [6].

We denote $X^{\#}=\{p\in\beta X\colon \text{ each }P\in p\text{ is unbounded in }X\}$ and, for $p,q\in X^{\#},$ write $p\parallel q$ if and only if there is $r\geqslant 0$ such that $B(Q,r)\in p$ for each $Q\in q,$ where $B(Q,r)=\bigcup_{x\in Q}B(x,r).$ A subset $S\subseteq X^{\#}$ is called invariant if $p\in S$ and $q\parallel p$ imply $q\in S.$ We characterize the minimal closed invariant subsets of X, the closure of the set $K(X^{\#})=\bigcup\{M\colon M\text{ is a minimal closed invariant subset of }X^{\#}\},$ and find the number of all minimal closed invariant subsets of $X^{\#}.$

For a subset $Y\subseteq X$ and $p\in X^\#$, we denote $\Delta_p(Y)=Y^\#\cap\{q\in X^\#\colon p\parallel q\}$ and say that a subset $S\subseteq X^\#$ is an ultracompanion of Y if $S=\Delta_p(Y)$ for some $p\in X^\#$. We characterize large, thick, prethick, small, thin and asymptotically scattered spaces in terms of their ultracompanions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let X be a discrete space, and let βX be the Stone-Čech compactification of X. We take the points of βX to be the ultrafilters on X, with the points of X identified with the principal ultrafilters, so $X^* = \beta X \setminus X$ is the set of all free ultrafilters. The topology of βX can be defined by stating that the set of the form $\overline{A} = \{p \in \beta X \colon A \in p\}$, where A is a subset of X, are base for the open sets. The universal property of βX states that every mapping $f: X \to Y$, where Y is a compact Hausdorff space, can be extended to the continuous mapping $f^{\beta}: \beta X \to Y$.

If S is a discrete semigroup, the semigroup multiplication has a natural extension to βS , see [6, Chapter 4]. The compact right topological semigroup βS has a plenty of applications to combinatorics, topological algebra and functional analysis, see [3,5,6,21,22].

Now let (X, d) be a metric space, $B(x, r) = \{y \in X : d(x, y) \leq r\}$ for all $x \in X$ and $r \geq 0$. A subset V of X is bounded if $V \subseteq B(x, r)$ for some $x \in X$ and $r \geq 0$. We suppose that X is unbounded, endow βX with the discrete topology and, for a subset Y of X, put

$$Y^{\#} = \{ p \in \beta X : \text{ each } P \in p \text{ is unbounded in } X \},$$

and note that $Y^{\#}$ is closed in βX .

For $p, q \in X^{\#}$, we write $p \parallel q$ if and only if there is $r \ge 0$ such that $B(Q, r) \in p$ for each $Q \in q$, where $B(Q, r) = \bigcup_{x \in Q} B(x, r)$. The parallel equivalence was introduced in [8] in more general context of balleans and used in [1,10–13].

For $p \in X^{\#}$, we denote $\bar{p} = \{q \in X^{\#} : p \mid q\}$ and say that a subset S of $X^{\#}$ is invariant if $\bar{p} \subseteq S$ for each $p \in S$. Every nonempty closed invariant subset of $X^{\#}$ contains some non-empty minimal (by inclusion) closed invariant subset. We denote

$$K(X^{\#}) = \bigcup \{M: M \text{ is a minimal closed invariant subset of } X^{\#}\}.$$

After a short technical Section 2, we show in Section 3 how one can detect whether $S \subseteq X^{\#}$ is a minimal closed invariant subset, and whether $q \in X^{\#}$ belongs to the closure of $K(X^{\#})$ in $X^{\#}$. We prove that the set of all minimal closed invariant subsets of $X^{\#}$ has cardinality $2^{2^{asden X}}$, where $asden X = \min\{|L|: L \subseteq X \text{ and } X = B(L, r) \text{ for some } r \geqslant 0\}$.

In Section 5 we show that from the ballean point of view the minimal closed invariant subsets are counterparts of the minimal left ideal in βG , where G is a discrete group. Thus, the results of Section 3 are parallel to Theorems 4.39, 4.40 and 6.30(1) from [6].

In Section 3 we use the following classification of subsets of a metric space. We say that a subset Y of X is

- large if X = B(Y, r) for some $r \ge 0$;
- thick if, for every $r \ge 0$, there exists $y \in Y$ such that $B(y,r) \subseteq Y$;
- prethick if B(Y, r) is thick for some $r \ge 0$;
- small if $X \setminus Y \cap L$ is large for every large subset L of X;
- thin if, for each $r \ge 0$, there exists a bounded subset V of X such that $B(y,r) \cap Y = \{y\}$ for each $y \in Y \setminus V$.

It should be mentioned that some of these notions have their counterparts in semigroups. Thus, large and prethick subsets correspond to syndedic and piecewise syndedic subsets [6, p. 101]. For definition of thick subset of a semigroup see [6, p. 104].

We note that Y is small if and only if Y is not prethick [15, Theorem 11.1], and the family of all small subsets of X is an ideal in the Boolean algebra of all subsets of X [15, Theorem 11.2]. Hence, for every finite partition of X, at least one cell is prethick.

For $p \in X^{\#}$ and $Y \subseteq X$, we put

and say that $\Delta_p(Y)$ is a *p-companion* of Y. A subset $S \subseteq X^\#$ is called an *ultracompanion* of Y if $S = \Delta_p(Y)$ for some $p \in X^\#$.

In Section 4 we characterize all above defined subsets of X and asymptotically scattered subsets from [14] in terms of their ultracompanions.

During the exposition, X is an unbounded metric space.

2. Parallelity

Lemma 2.1. Let Y be a subset of X, $r \ge 0$, $q \in X^{\#}$. If $B(Y,r) \in q$ then there exists $s \in Y^{\#}$ such that $q \parallel s$.

Download English Version:

https://daneshyari.com/en/article/4658671

Download Persian Version:

https://daneshyari.com/article/4658671

<u>Daneshyari.com</u>