A model for function spaces

CrossMark

J.-B. Gatsinzi
Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia

A R T I C L E I N F O

$M S C$:

primary 55P62
secondary 54C35
Keywords:
Rational homotopy
Function space

Abstract

Let $f: X \rightarrow Y$ be a map between simply connected spaces and $\bar{f}: \mathbb{L}(V) \rightarrow \mathbb{L}(W)$ its Quillen model. If the differential on $\mathbb{L}(V)$ has only linear and quadratic parts, we show that there is a Lie algebra structure on $\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))$, making of it a Lie model of the function $\operatorname{space} \operatorname{map}(X, Y ; f)$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Throughout the paper spaces are assumed to be of the homotopy type of simply connected CW-complexes. We make use of Quillen models in rational homotopy theory for which we refer to $[4,8]$ for details. To each space X, Quillen associates, in a functorial way, a differential graded algebra $\lambda(X)$ which characterizes its rational homotopy type. A Lie model of X is any differential graded Lie algebra of the homotopy type of $\lambda(X)$. Among these, a Quillen model of X is a Lie model of the form $(\mathbb{L}(V), \delta)$ in which $\mathbb{L}(V)$ denotes the Lie algebra generated by the graded vector space V.

Let $f: X \rightarrow Y$ be a map, in which X is finite and Y is of finite type, and denote by $\bar{f}:(\mathbb{L}(V), \delta) \rightarrow$ $\left(\mathbb{L}(W), \delta^{\prime}\right)$ a Quillen model of f. The adjoint action of $T(W)$ on $\mathbb{L}(W)$ and the map $U \bar{f}:(T V, d) \rightarrow\left(T W, d^{\prime}\right)$ induces a $T V$-differential module structure on $\mathbb{L}(W)$. In [5], it was shown that

$$
\begin{equation*}
\pi_{n}(\Omega \operatorname{map}(X, Y ; f)) \otimes \mathbb{Q} \cong E x t_{n}^{T V}(\mathbb{Q}, \mathbb{L}(W)) \tag{1}
\end{equation*}
$$

However the right term is computed using a semifree resolution $(T V \otimes(\mathbb{Q} \oplus s V), D) \xrightarrow{\simeq} \mathbb{Q}$, where the differential is defined by

$$
D(v \otimes 1)=d v \otimes 1, \quad D s v=v \otimes 1-S(d v \otimes 1)
$$

and S is the \mathbb{Q}-graded vector space map (of degree 1) defined by

[^0]\[

$$
\begin{gathered}
S(v \otimes 1)=1 \otimes s v, \quad S(1 \otimes(\mathbb{Q} \oplus s V))=0 \\
S(a x \otimes 1)=(-1)^{|a|} a S(x \otimes 1), \quad \forall a \in T V,|x|>0 \quad[1,6] .
\end{gathered}
$$
\]

Let $P=T V \otimes(\mathbb{Q} \oplus s V)$. Denote $s v$ by \bar{v} and $x \otimes y \in P \otimes P$ by $x \mid y$. If $(T V, d)=\left(T V, d_{1}+d_{2}\right)$ where $d_{1} v \in V$ and $d_{2} v=\sum a_{i j} v_{i} v_{j}$, we define a $T V$-map $\Delta: P \rightarrow P \otimes_{T V} P$ by setting $\Delta(1)=1 \mid 1, \Delta(\bar{v})=$ $\bar{v}|1+1| \bar{v}+\sum(-1)^{\left|v_{i}\right|} a_{i j}\left(\bar{v}_{i} \mid \bar{v}_{j}\right)$ and extend Δ to $T V \otimes(\mathbb{Q} \oplus s V)$ as a morphism of $T V$-modules. We define

$$
S \otimes S: V \otimes V \rightarrow s V \otimes s V \subset P \otimes P
$$

by

$$
\begin{equation*}
(S \otimes S)\left(\sum_{i} v_{i} \otimes w_{i}\right)=\sum_{i}(-1)^{\left|v_{i}\right|}\left(\bar{v}_{i} \mid \bar{w}_{i}\right) . \tag{2}
\end{equation*}
$$

Hence $\Delta(\bar{v})=\bar{v}|1+1| \bar{v}+(S \otimes S)\left(d_{2} v\right)$.
Following [2,7], we define a bracket on $\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))$ using the composition

$$
P \xrightarrow{\Delta} P \otimes_{T V} P \xrightarrow{\alpha \otimes \beta} \mathbb{L}(W) \otimes_{T V} \mathbb{L}(W) \xrightarrow{[-,-]} \mathbb{L}(W),
$$

that is, $[\alpha, \beta]=[,] \circ(\alpha \otimes \beta) \circ \Delta$. Moreover the usual differential on $\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))$ is defined by $\tilde{D} g=\delta^{\prime} g-(-)^{|g|} g D$. Endowed with this bracket, $\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W)), \tilde{D}\right)$ becomes a differential graded Lie algebra.

Given a map $f: X \rightarrow Y$, the connected component of $\operatorname{map}(X, Y)$ containing f is denoted by $\operatorname{map}(X, Y ; f)$. In this paper, we show the following result.

Theorem 1. Under the bracket defined above, $\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W)), \tilde{D}\right)$ is a Lie model of $\operatorname{map}(X, Y ; f)$.

2. A model for function spaces

A model for function spaces is described in [2] and the same authors study L_{∞}-models of based map spaces [3]. We recall here a model of $\operatorname{map}(X, Y ; f)$ (see [2]).

For a differential graded Lie algebra (L, δ), the Cartan-Eilenberg construction leads to a cocommutative differential coalgebra $C_{*}(L)=\left(\bigwedge(s L), d_{1}+d_{2}\right)$ where

$$
\begin{align*}
& d_{1}\left(s x_{1} \wedge \cdots \wedge s x_{k}\right)=-\sum_{i=1}^{k}(-1)^{n_{i}} s x_{1} \wedge \cdots \wedge s \delta x_{i} \wedge \cdots \wedge s x_{k} \tag{3}\\
& d_{2}\left(s x_{1} \wedge \cdots \wedge s x_{k}\right)=\sum_{1 \leqslant i<j \leqslant k}(-1)^{n_{i j}}(-1)^{\left|s x_{i}\right|} s\left[x_{i}, x_{j}\right] \wedge s x_{1} \wedge \cdots \widehat{s x_{i}} \cdots \widehat{s x_{j}} \cdots \wedge s x_{k} \tag{4}
\end{align*}
$$

where $n_{i}=\sum_{j<i}\left|s x_{j}\right|, n_{i j}$ is the Koszul sign of the permutation

$$
\left(s x_{1}, \ldots, s x_{k}\right) \rightarrow\left(s x_{i}, s x_{j}, s x_{1}, \ldots, \widehat{s x_{i}}, \ldots, \widehat{s x_{j}}, \ldots, s x_{k}\right),
$$

and the symbol ^ means deleted.
Let $\bar{f}:(L, \delta) \rightarrow\left(L^{\prime}, \delta^{\prime}\right)$ be a Lie model of f. We consider the composition map \tilde{f} (of degree -1)

$$
C_{*}(L) \xrightarrow{C_{*}(\bar{f})} C_{*}\left(L^{\prime}\right) \xrightarrow{p} s L^{\prime} \xrightarrow{\cong} L^{\prime} .
$$

https://daneshyari.com/en/article/4658697

Download Persian Version:

https://daneshyari.com/article/4658697

Daneshyari.com

[^0]: E-mail address: jgatsinzi@unam.na.
 http://dx.doi.org/10.1016/j.topol.2014.02.021
 0166-8641/© 2014 Elsevier B.V. All rights reserved.

