Eulerian paths and a problem concerning n-arc connected spaces

Alessandro Fedeli ${ }^{\text {a,* }}$, Attilio Le Donne ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Universitá dell'Aquila, 67100 L'Aquila, Italy
${ }^{\text {b }}$ Dipartimento di Matematica, Universitá di Roma"La Sapienza", 00185 Roma, Italy

A R T I C L E I N F O

Article history:
Received 27 March 2013
Accepted 7 October 2013

MSC:

54F15
54D05
54G20

Keywords:
n-Arc connected
Graph

Abstract

In this paper we give, in response to a question of Espinoza, Gartside and Mamatelashvili, an example of an n-arc connected (metric) continuum which is not $(n+1)$-arc connected for every $n \geqslant 7$. © 2013 Elsevier B.V. All rights reserved.

1. Introduction

A topological space X is called n-arc connected (n-ac) if for any points $x_{1}, \ldots, x_{n} \in X$, there is an arc γ in X such that x_{1}, \ldots, x_{n} are all in $\gamma[2]$. Note that a space is 2 -arc connected if and only it is arcwise connected.

If every n-points of a space X lie on an arc which goes through them in order, X will be called n-strong arc connected (n-sac) [3].

A (topological) graph is a connected space obtained by taking a finite nonempty family \mathcal{F} of disjoint arcs (i.e., homeomorphic copies of the unit interval), and then identifying some of the endpoints.

In [2] it is shown that:
i) There are n-arc connected graphs which are not $(n+1)$-arc connected for every $n \leqslant 6$.
ii) A 7-arc connected space which is a graph must be n-arc connected for every n.

This led the authors of [2] to ask for examples of (regular) continua which are n-ac but not ($n+1$)-ac for $n \geqslant 7$. (A continuum is said to be regular if it has a base all of whose elements have a finite boundary.)

[^0]The aim of this note is to give such examples (for every $n \geqslant 2$).
Let G be a graph (given by a finite family \mathcal{F} of arcs):
i) Every arc in \mathcal{F} (modulo the identifications) is called edge. An endpoint (modulo the identifications) of an edge is called vertex. An edge whose vertices are coincident is called loop.
ii) The degree of a vertex is the number of edges incident to the vertex (with loops counted twice).
iii) A path in G is called Eulerian if it visits every edge of G at most once.

We say also that a graph G is n-Eulerian if for any points $x_{1}, \ldots, x_{n} \in G$, there is an Eulerian path γ in G such that x_{1}, \ldots, x_{n} are all in γ.

Clearly every n-ac graph is n-Eulerian, moreover a graph G which has an Eulerian path whose image is G (i.e., it is surjective) is n-Eulerian for every n.

Our solution to the problem of Espinoza, Gartside and Mamatelashvili will rely on the following
Euler Theorem. A graph has a surjective Eulerian path if and only if it has at most two odd vertices (i.e., either all vertices are of even degree, or exactly two vertices are of odd degree).

The reader is referred to [1] for notations and terminology not explicitly given.

2. The results

A pertinent consequence of the Euler theorem cited above is the following
Proposition 1. Let G be a graph without loops which has exactly four vertices, all of odd degree. If the number of edges is $n+1$, then G is n-Eulerian but not $(n+1)$-Eulerian.

Proof. Let us show that G is not $(n+1)$-Eulerian. Take $n+1$ points $x_{1}, \ldots, x_{n+1} \in G$, each one in a different edge of G. An Eulerian path in G containing x_{1}, \ldots, x_{n+1} would be surjective, this is not possible (by Euler theorem). Therefore G is not $(n+1)$-Eulerian.

Now let us take n points $x_{1}, \ldots, x_{n} \in G$. Without loss of generality, we may assume that none of them is a vertex. Then there is an edge γ of G which does not contain any of x_{1}, \ldots, x_{n}.

Now $H=\overline{G \backslash \gamma}$ is connected. In fact, let v_{1}, v_{2}, v_{3} and v_{4} be the vertices of G and let us suppose that v_{1} and v_{2} are the endpoints of γ. If v_{1} (or v_{2}) is not in H, then H is clearly connected. Otherwise, if $v_{1}, v_{2} \in H$ and H is disconnected, then one of the vertices v_{3} and v_{4} is joined only with v_{1} and the other one only with v_{2}. Since v_{1} and v_{2} have odd degree, it follows that v_{3} and v_{4} have even degree. A contradiction.

So H is a graph with exactly two vertices of odd degree (because G has no loops). Therefore, by Euler theorem, there is a surjective Eulerian path γ in H. So γ is an Eulerian path in G containing x_{1}, \ldots, x_{n}. Therefore G is n-Eulerian.

Remark 2. Let us note that for every $n \geqslant 3$ there is a graph without loops with exactly four vertices, all of odd degree, and n edges.

The construction is by induction.
For $n=3$ let us take four vertices v_{0}, v_{1}, v_{2} and v_{3} and three $\operatorname{arcs} l_{1}, l_{2}$ and l_{3} in such a way that l_{i} joins v_{i} and v_{0} for $i=1,2,3$.

For $n=4$ let us take four vertices v_{1}, v_{2}, w_{1} and w_{2} and four arcs l_{1}, l_{2}, m_{1} and m_{2} in such a way that l_{i} joins v_{i} and w_{i} and m_{i} joins w_{1} and w_{2} for $i=1,2$.

Now given a graph with n edges we may obtain a graph with $n+2$ edges by fixing two distinct vertices v_{i} and v_{j} and adding two edges with endpoints v_{i} and v_{j}.

https://daneshyari.com/en/article/4658741

Download Persian Version:

https://daneshyari.com/article/4658741

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: afedeli@univaq.it (A. Fedeli), ledonne@mat.uniroma1.it (A. Le Donne).

