Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Eulerian paths and a problem concerning n-arc connected spaces

Alessandro Fedeli^{a,*}, Attilio Le Donne^b

^a Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Universitá dell'Aquila,
67100 L'Aquila, Italy
^b Dipartimento di Matematica, Universitá di Roma "La Sapienza", 00185 Roma, Italy

A R T I C L E I N F O

Article history: Received 27 March 2013 Accepted 7 October 2013

MSC: 54F15 54D05 54G20

 $\begin{array}{l} Keywords:\\ n\text{-}Arc \ connected\\ Graph \end{array}$

1. Introduction

A topological space X is called *n*-arc connected (*n*-ac) if for any points $x_1, \ldots, x_n \in X$, there is an arc γ in X such that x_1, \ldots, x_n are all in γ [2]. Note that a space is 2-arc connected if and only it is arcwise connected.

If every *n*-points of a space X lie on an arc which goes through them in order, X will be called *n*-strong arc connected (n-sac) [3].

A (topological) graph is a connected space obtained by taking a finite nonempty family \mathcal{F} of disjoint arcs (i.e., homeomorphic copies of the unit interval), and then identifying some of the endpoints.

In [2] it is shown that:

- i) There are *n*-arc connected graphs which are not (n + 1)-arc connected for every $n \leq 6$.
- ii) A 7-arc connected space which is a graph must be n-arc connected for every n.

This led the authors of [2] to ask for examples of (regular) continua which are *n*-ac but not (n + 1)-ac for $n \ge 7$. (A continuum is said to be regular if it has a base all of whose elements have a finite boundary.)

* Corresponding author. E-mail addresses: afedeli@univaq.it (A. Fedeli), ledonne@mat.uniroma1.it (A. Le Donne).

ABSTRACT

In this paper we give, in response to a question of Espinoza, Gartside and Mamatelashvili, an example of an *n*-arc connected (metric) continuum which is not (n + 1)-arc connected for every $n \ge 7$.

 $\ensuremath{\textcircled{O}}$ 2013 Elsevier B.V. All rights reserved.

The aim of this note is to give such examples (for every $n \ge 2$). Let G be a graph (given by a finite family \mathcal{F} of arcs):

- i) Every arc in \mathcal{F} (modulo the identifications) is called edge. An endpoint (modulo the identifications) of an edge is called vertex. An edge whose vertices are coincident is called loop.
- ii) The degree of a vertex is the number of edges incident to the vertex (with loops counted twice).
- iii) A path in G is called Eulerian if it visits every edge of G at most once.

We say also that a graph G is n-Eulerian if for any points $x_1, \ldots, x_n \in G$, there is an Eulerian path γ in G such that x_1, \ldots, x_n are all in γ .

Clearly every *n*-ac graph is *n*-Eulerian, moreover a graph G which has an Eulerian path whose image is G (i.e., it is surjective) is *n*-Eulerian for every n.

Our solution to the problem of Espinoza, Gartside and Mamatelashvili will rely on the following

Euler Theorem. A graph has a surjective Eulerian path if and only if it has at most two odd vertices (*i.e.*, either all vertices are of even degree, or exactly two vertices are of odd degree).

The reader is referred to [1] for notations and terminology not explicitly given.

2. The results

A pertinent consequence of the Euler theorem cited above is the following

Proposition 1. Let G be a graph without loops which has exactly four vertices, all of odd degree. If the number of edges is n + 1, then G is n-Eulerian but not (n + 1)-Eulerian.

Proof. Let us show that G is not (n + 1)-Eulerian. Take n + 1 points $x_1, \ldots, x_{n+1} \in G$, each one in a different edge of G. An Eulerian path in G containing x_1, \ldots, x_{n+1} would be surjective, this is not possible (by Euler theorem). Therefore G is not (n + 1)-Eulerian.

Now let us take n points $x_1, \ldots, x_n \in G$. Without loss of generality, we may assume that none of them is a vertex. Then there is an edge γ of G which does not contain any of x_1, \ldots, x_n .

Now $H = G \setminus \gamma$ is connected. In fact, let v_1, v_2, v_3 and v_4 be the vertices of G and let us suppose that v_1 and v_2 are the endpoints of γ . If v_1 (or v_2) is not in H, then H is clearly connected. Otherwise, if $v_1, v_2 \in H$ and H is disconnected, then one of the vertices v_3 and v_4 is joined only with v_1 and the other one only with v_2 . Since v_1 and v_2 have odd degree, it follows that v_3 and v_4 have even degree. A contradiction.

So H is a graph with exactly two vertices of odd degree (because G has no loops). Therefore, by Euler theorem, there is a surjective Eulerian path γ in H. So γ is an Eulerian path in G containing x_1, \ldots, x_n . Therefore G is n-Eulerian. \Box

Remark 2. Let us note that for every $n \ge 3$ there is a graph without loops with exactly four vertices, all of odd degree, and n edges.

The construction is by induction.

For n = 3 let us take four vertices v_0 , v_1 , v_2 and v_3 and three arcs l_1 , l_2 and l_3 in such a way that l_i joins v_i and v_0 for i = 1, 2, 3.

For n = 4 let us take four vertices v_1 , v_2 , w_1 and w_2 and four arcs l_1 , l_2 , m_1 and m_2 in such a way that l_i joins v_i and w_i and m_i joins w_1 and w_2 for i = 1, 2.

Now given a graph with n edges we may obtain a graph with n + 2 edges by fixing two distinct vertices v_i and v_j and adding two edges with endpoints v_i and v_j .

Download English Version:

https://daneshyari.com/en/article/4658741

Download Persian Version:

https://daneshyari.com/article/4658741

Daneshyari.com