Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Fibers of generic maps on surfaces

Damian Sobota

Wroclaw University of Technology, Institute of Mathematics and Computer Science, ul. Janiszewskiego 14a, 50-372 Wroclaw, Poland

ARTICLE INFO

Article history: Received 9 May 2013 Received in revised form 6 October 2013 Accepted 7 October 2013

MSC: primary 54C05, 57N05 secondary 54C35, 54F15, 57M20

Keywords: Generic maps Triangulations of surfaces Hereditarily indecomposable continua

1. Introduction

A B S T R A C T

Using special triangulations of a compact 2-dimensional topological manifold without boundary S, for every closed subset $F \subseteq S$ we construct a dense in the mapping space C(F, [0, 1]) family of piecewise linear mappings whose fibers consist of components homeomorphic to subcontinua of the figure eight. The number of fibers with a figure-eight component is evaluated for each such map in the case F = S. We then prove that every fiber of a generic map in C(F, [0, 1]) consists only of components being either a singleton or a figure-eight-like hereditarily indecomposable continuum. This extends a result of Z. Buczolich and U.B. Darji. © 2013 Elsevier B.V. All rights reserved.

X into Y with the supremum norm. By saying that a generic continuous function $f \in C(X, Y)$ has property \mathcal{P} we mean the existence of a dense \mathbb{G}_{δ} -subset $G \subseteq C(X, Y)$ such that every $f \in G$ has the property \mathcal{P} . For compact metric spaces and the unit interval I = [0, 1] with the natural topology, M. Levin proved the following theorem:

Given any two metric spaces X and Y, by C(X,Y) we denote the space of all continuous mappings from

Theorem 1.1. ([1]) Let X be a compact metric space. Then every component of every fiber of a generic $f \in C(X, I)$ is a hereditarily indecomposable continuum.

A *continuum* is a connected compact metric space. We say that a continuum is *indecomposable* if it cannot be represented as a union of its two proper subcontinua and it is *hereditarily indecomposable* if its every subcontinuum is indecomposable.

Independently of Levin, J. Krasinkiewicz obtained a stronger result:

E-mail address: damian.sobota@pwr.wroc.pl. *URL:* http://www.im.pwr.wroc.pl/~sobota.

Theorem 1.2. ([2]) Let X be a compact metric space and M be a manifold of positive dimension. Then every component of every fiber of a generic $f \in C(X, M)$ is a hereditarily indecomposable continuum.

J. Song and E.D. Tymchatyn generalized the Krasinkiewicz theorem to polygons:

Theorem 1.3. ([3]) Let X be a compact metric space and P be a locally finite polygon. Then every component of every fiber of a generic $f \in C(X, P)$ is a hereditarily indecomposable continuum.

These three theorems characterize fibers of a generic map between two given spaces in a very general way – they state only that components of these fibers are hereditarily indecomposable continua. A major step toward a more precise description is the paper by Z. Buczolich and U.B. Darji [4], where the characterization is given of components of fibers of a generic map from the 2-dimensional sphere S^2 into the unit interval I in terms of ε -mappings onto the figure eight ϑ – a space homeomorphic to the wedge of two circles $S^1 \vee S^1$. A function $f \in C(X, Y)$ is an ε -mapping if the preimage of every point has diameter less than ε . For a finite graph P a continuum X is P-like if for every $\varepsilon > 0$ there exists an ε -mapping from X onto P.

Theorem 1.4. (Buczolich and Darji [4]) Every component of every fiber of a generic $f \in C(S^2, I)$ is either a singleton or an \mathscr{P} -like hereditarily indecomposable continuum.

This paper generalizes the theorem of Buczolich and Darji to any closed subset of a compact surface (Theorem 3.4). The idea of the proof is based on the technique of Buczolich and Darji, i.e. by constructing appropriate triangulations of a surface we prove the existence of a dense family of continuous mappings with components of fibers being points, circles or eights. The existence of this family is crucial for the proof of the main theorem (Lemma 3.3). A very simple method of triangulating S^2 presented in [4] cannot be directly carried over an arbitrary compact surface, so in this paper we propose a new way of constructing triangulations of compact surfaces. We call those triangulations eight-like (cf. Definition 2.1). They have a series of features common with the triangulation presented in [4], hence the proofs of Lemmas 2.3, 2.6, 2.7 and 2.15 are strongly based on the proofs of corresponding lemmas from [4].

2. Triangulations of surfaces

By a surface we always mean a 2-dimensional topological manifold, i.e. a non-empty locally Euclidean, second countable, Hausdorff space. By a triangulation \mathcal{T} of a surface S we mean a pair (\mathcal{K}, φ) where \mathcal{K} is a Euclidean simplicial complex and $\varphi : |\mathcal{K}| \to S$ is a homeomorphism from the polygon $|\mathcal{K}|$ induced by \mathcal{K} onto S. For simplicity, we identify the complex \mathcal{K} with its polygon $|\mathcal{K}|$. If $v = \varphi(x)$ for some 0-simplex $x \in \mathcal{K} \ (\approx |\mathcal{K}|)$, then v is a vertex of \mathcal{T} . We define similarly edges and triangles of \mathcal{T} as images by φ of respectively 1- and 2-simplices from \mathcal{K} . If vertices u and v of \mathcal{T} are distinct end points of an edge e of \mathcal{T} , then we denote e simply by uv. The sets of vertices and edges of \mathcal{T} are denoted by \mathcal{V} and \mathcal{E} , respectively. The set of triangles of \mathcal{T} is identified with \mathcal{T} itself, i.e. $t \in \mathcal{T}$ means that t is a triangle of \mathcal{T} . Given a vertex $v \in \mathcal{V}$, we denote by N(v) the set of all neighbors of v in \mathcal{T} , i.e. $N(v) = \{w \in \mathcal{V}: vw \in \mathcal{E}\}$. V(e) and V(t)denote, respectively, the 2-element set of end points of an edge $e \in \mathcal{E}$ and the 3-element set of vertices of a triangle $t \in \mathcal{T}$. Given a graph G, the degree of a vertex v of G, denoted by $\deg_G v$, is the cardinality of N(v) in G.

Definition 2.1. A triangulation \mathcal{T} is *eight-like* if every $v \in \mathcal{V}$ has degree greater than 3 and there exists a 3-coloring $c: \mathcal{V} \to \{-, 0, +\}$ of vertices of \mathcal{T} satisfying the following conditions:

- 1. for every $v \in \mathcal{V}$:
 - if $\deg_{\mathcal{T}} v \neq 4, 6$, then $c(v) \neq 0$;

Download English Version:

https://daneshyari.com/en/article/4658742

Download Persian Version:

https://daneshyari.com/article/4658742

Daneshyari.com