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In this paper, we describe compact nodec spaces and we characterize space such that
its one point compactification (respectively Wallman compactification) is nodec. We
also establish a characterization of spaces such that their compactification is an
I-space. And we give necessary and sufficient conditions on the space X in order to
get its Herrlich compactification remainder finite.
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Introduction

A subset N of a topological space X is called nowhere dense if the interior of the closure of N is the
empty set. Recall that a space X is a nodec space if each nowhere dense subset of X is closed. A topological
space X is an I-space if its derived set Xd (that is the set of accumulation points) is discrete. And, if every
subset of X is an intersection of a closed subset and an open set of X, then the X is said to be submaximal.
Submaximal spaces have been studied by several authors (see, for instance, [1,7,9]).

Classically we have the following implications:

I-space ⇒ Submaximal ⇒ Nodec

It is shown in [3] that a compactification K(X) of a topological space X is submaximal if and only if for
each dense subset D of X, the following properties hold:
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(i) K(X)\D is finite.
(ii) For each x ∈ K(X) \D, {x} is closed.

The first section of this paper contains some remarks of nodec spaces and compact nodec spaces. We also
give a necessary and sufficient conditions on a space X in order to get its one point compactification (resp.
Wallman compactification) nodec.

The second section deals with the characterization of spaces such that their compactification are I-spaces.
We establish a necessary and sufficient conditions on a space X to get its one point compactification (resp.
Wallman compactification) an I-space.

In the third section we give a characterization of spaces such that their Herrlich compactification remain-
der is finite.

Throughout this paper we consider spaces on which no separation axioms are assumed unless explicitly
stated. Let X be a topological space and A be a subset of X. The closure of A in X is denoted by clX(A),
and if A is finite we denote Card(A) the cardinality of A.

1. Nodec spaces and compactifications

Let first recall the definition of the Krull dimension of a T0-space. Let (X, T ) be a T0-space. Then X has
a partial order �, induced by T by taking x � y if and only if y ∈ clX(x). Hence clX(x) = {y | y � x} is
the specialization of x [8]. The notion of the Krull dimension defined on the prime spectrum of a ring has
been generalized to T0-spaces [4]. The chain x0 < x1 < · · · < xn of elements of X is said to be a chain of
length n. The supremum of the lengths of chains is called the Krull dimension of (X, T ) and is denoted by
dimK(X, T ).

In [2] the authors have proved that if a T0-space (X, T ) is submaximal, then dimK(X, T ) � 1.

Proposition 1.1. Let (X, T ) be a nodec T0-space. Then dimK(X, T ) � 1.

Proof. Let x ∈ X. If y ∈ clX(x)\{x}, then {y} is a nowhere dense subset of X. Hence {y} is closed. Thus
y is a maximal point (for the order induced by the topology T ) of X. Therefore dimK(X, T ) � 1. �
Example 1.2. There exists a nodec space with Krull dimension 1 which is not a submaximal space.

Let Z be the set of the integers, equipped with the topology T = {∅}∪{U ⊆ Z | 0 ∈ U and Z\U is finite}.
Clearly dimK(Z, T ) = 1, whilst (Z, T ) is nodec, since every nowhere dense set is finite. On the other hand,
(Z, T ) is not submaximal, since {0} is not an intersection of a closed subset and an open subset of Z.

In fact, more can be said.

Example 1.3. There exists a T0-space with Krull dimension 1 which is not a nodec space.
Let X = Z ∪ {ω1, ω2} and � be the order on X defined by 2n + 1 � 2n, 2n− 1 � 2n and ω1 � ω2. Let

U be a collection of upper subsets X (that is, A ∈ U if and only if {y ∈ X | x � y} ⊆ A, for each x ∈ A).
Let T be the topology on X whose closed sets are empty set and elements A of A such that A is finite or
ω2 ∈ A. Let L = {2n | n ∈ Z}. Then clX(L) = L ∪ {ω2} and the interior of clX(L) is the empty set. Hence,
L is a nowhere dense subset of X but not a closed set of X. Thus X is not nodec.

We need the following definition to describe compact nodec spaces.

Definition 1.4. A topological space X is said to be a strong-nodec space (s-nodec, for short) if each nowhere
dense subset is finite and closed.
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