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In [5] base dimension-like functions of the type Ind were introduced. These functions
were studied only with respect to the property of universality. Here, we first compare
these dimensions with the classical large inductive dimension Ind and then study
these functions with respect to other standard properties of dimension theory.
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1. Introduction and preliminaries

We denote by ω the first infinite cardinal and by O the class of all ordinals. We also consider two extra
symbols, “−1” and “∞” such that −1 < α < ∞ for every α ∈ O, −1(+)α = α(+)(−1) = α for every
α ∈ O ∪ {−1,∞}, and ∞(+)α = α(+)∞ = ∞ for every α ∈ O ∪ {∞}, where by (+) we denote the natural
sum of Hessenberg (see [6]). We recall some properties of natural sum. Let α and β be ordinals. Then,

(1) α(+)β = β(+)α,
(2) if α1 < α2, then α1(+)β < α2(+)β, and
(3) α(+)n = α + n for n < ω.

Let Q be a subset of a space X. We denote by ClX(Q) and BdX(Q) the closure and the boundary of Q
in X, respectively.

By a class of subsets we mean a class consisting of pairs (Q,X), where Q is a subset of a space X. By a
class of bases we mean a class consisting of pairs (B,X), where B is a base of a space X.
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Let B be a base of a space X. The minimal ring of subsets of X containing B, that is the smallest family
of subsets of X closed under finite unions and finite intersections containing B, is denoted by B♦.

The large inductive dimension of a space X (see for example [3] and [7]), denoted by Ind(X), is defined
as follows:

(i) Ind(X) = −1 if and only if X = ∅.
(ii) Ind(X) � α, where α ∈ O, if and only if for every pair (K,V ) of subsets of X, where K is closed, V is

open, and K ⊆ V , there exists an open set W of X such that K ⊆ W ⊆ V and Ind(BdX(W )) < α.
(iii) Ind(X) = ∞ if and only if the inequality Ind(X) � α does not hold for every α ∈ O ∪ {−1}.

A topological space X is called a T4-space if for every pair (K,F ) of disjoint closed subsets of X there
exist open subsets U and V of X such that K ⊆ U , F ⊆ V , and U ∩ V = ∅. We note that a space X is T4

if and only if for every pair (K,V ) of subsets of X, where K is closed, V is open, and K ⊆ V , there exists
an open subset U of X such that K ⊆ U ⊆ ClX(U) ⊆ V .

The base dimension-like functions b∨-Ind, b-Ind, and b♦-Ind of the type Ind were introduced by S.D. Il-
iadis in [5]. In Section 2 we investigate the relations between of them and we compare these dimensions with
the classical large inductive dimension Ind. In Sections 3, 4, and 5 we present for these functions subspace,
partition, and sum theorems. Finally, in Section 6 we give some questions concerning these functions.

About some other base dimension-like functions of the type Ind see for example [1,4], and [5].

2. On the base dimension-like functions b∨-Ind, b-Ind, and b♦-Ind

Definition 2.1. (See [5].) Let B be a base for a space X. A pair (K,V ) of subsets of X is said to be B∨-proper
if K is the closure of the finite union of elements of B, V is the finite union of elements of B, and K ⊆ V .

Definition 2.2. (See [5].) We denote by b∨-Ind the base dimension-like function with domain the class of all
bases and range the set O ∪ {−1,∞} satisfying the following conditions:

(i) b∨-Ind(B,X) = −1 if and only if X = ∅.
(ii) b∨-Ind(B,X) � α, where α ∈ O, if and only if for every B∨-proper pair (K,V ) of subsets of X there

exists an open subset W of X such that K ⊆ W ⊆ V and b∨-Ind({BdX(W )∩U : U ∈ B},BdX(W )) < α.

Definition 2.3. (See [5].) Let B be a base for a space X. A pair (K,V ) of subsets of X is said to be B-proper
if K is the closure of an element of B, V ∈ B, and K ⊆ V .

Definition 2.4. (See [5].) We denote by b-Ind the base dimension-like function with domain the class of all
bases and range the set O ∪ {−1,∞} satisfying the following conditions:

(i) b-Ind(B,X) = −1 if and only if X = ∅.
(ii) b-Ind(B,X) � α, where α ∈ O, if and only if for every B-proper pair (K,V ) of subsets of X there exists

an open subset W of X such that K ⊆ W ⊆ V and b-Ind({BdX(W ) ∩ U : U ∈ B},BdX(W )) < α.

Definition 2.5. (See [5].) Let B be a base for a space X. A pair (K,V ) of subsets of X is said to be B♦-proper
if K is the closure of an element of B♦, V ∈ B♦, and K ⊆ V .

Definition 2.6. (See [5].) We denote by b♦-Ind the base dimension-like function with domain the class of all
bases and range the set O ∪ {−1,∞} satisfying the following conditions:
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