On monotone stability ☆

R. Rojas-Hernández

Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico D.F., Mexico

ABSTRACT

ARTICLE INFO

Article history: Received 20 September 2012 Received in revised form 27 December 2013 Accepted 18 January 2014

MSC: 54C35 54B10

Keywords: Monotonically monolithic space Monotonically stable space Function space Σ_{κ} -product

1. Introduction

A space X is monolithic if $nw(cl A) \leq max\{|A|, \omega\}$ for every subspace A of X. This concept was introduced by A.V. Arhangel'skii in [2]. V.V. Tkachuk introduced the concept of a monotonically monolithic space:

Definition 1.1. Given a subset A of a space X, we say that a family \mathcal{N} of subsets of X is an *external network* of A in X if for each $x \in A$ and each open subset U of X with $x \in U$, there is $N \in \mathcal{N}$ such that $x \in N \subset U$.

Definition 1.2. We say that a space X is *monotonically monolithic* [8] if for each $A \subset X$, we can assign an external network $\mathcal{O}(A)$ of cl(A) in X in such a way that the following conditions hold:

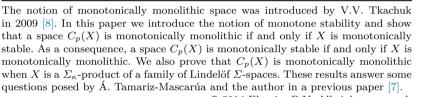
(1) $|\mathcal{O}(A)| \leq \max\{|A|, \omega\};\$

- (2) if $A \subset B \subset X$, then $\mathcal{O}(A) \subset \mathcal{O}(B)$;
- (3) if $\{A_{\alpha}: \alpha < \gamma\}$ is a family of subsets of X with $A_{\alpha} \subset A_{\beta}$ for $\alpha < \beta$, then $\mathcal{O}(\bigcup\{A_{\alpha}: \alpha < \gamma\}) = \bigcup\{\mathcal{O}(A_{\alpha}): \alpha < \gamma\}$.

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol



© 2014 Elsevier B.V. All rights reserved.

Topology

^{*} Research supported by PAPIIT grant No. IN-115312 and CONACyT scholarship for Doctoral Students. E-mail address: satzchen@yahoo.com.mx.

51

Furthermore, for an infinite cardinal κ , X is said to be monotonically κ -monolithic [1] if $\mathcal{O}(A)$ is defined for all sets A with $|A| \leq \kappa$ and satisfies the above conditions.

The class of monotonically monolithic spaces turned out to be important. V.V. Tkachuk showed that each element in this class has the *D*-property, hereditarily [8]. The class of monotonically monolithic spaces is reasonably wide; indeed, this contains the spaces with a point countable base [8], the stratifiable spaces [5,6] and the spaces $C_p(X)$ when X is a Lindelöf Σ -space [8]. In particular, every metrizable space is monotonically monolithic. Among its categorical properties, it is known that monotone monolithicity is preserved by countable products, arbitrary subspaces and closed maps [8].

It is known that $C_p(X)$ is monolithic if and only if X is a stable space, and that $C_p(X)$ is stable if and only if X is a monolithic space [3]. Moreover, $C_p(X)$ is monotonically monolithic for several spaces that are stable; indeed, this happens when X is a Σ_{κ} -product (hence, a product, σ -product or Σ -product) of spaces with countable network weight and when X is a product of Lindelöf Σ spaces [7]. For this reason in [7] the following questions appear:

Problem 1.3. Given a class C of topological spaces, determine a topological property $\mathcal{P}(C)$ which satisfies: for every space $X \in C$, $C_p(X)$ is monotonically monolithic if and only if X has property $\mathcal{P}(C)$.

Question 1.4. Let X be a Σ_{κ} -product of Lindelöf Σ -spaces. Is $C_p(X)$ then monotonically monolithic?

We introduce the concept of monotonically stable space and show that $C_p(X)$ is monotonically monolithic if and only if X is monotonically stable. As a consequence, a space $C_p(X)$ is monotonically stable if and only if X is monotonically monolithic. So, any Σ_{κ} -product (hence, any product, σ -product or Σ -product) of spaces with countable network weight is monotonically stable as well as any product of Lindelöf Σ spaces. Furthermore, we prove that if X is a Σ_{κ} -product of a family of Lindelöf Σ -spaces then X is monotonically stable, that is, $C_p(X)$ is monotonically monolithic. This answers Question 1.4 in the affirmative.

2. Notation and terminology

Every space in this article is a Tychonoff space with more than one point. The letters α , β and γ represent ordinal numbers and the letters κ and λ represent infinite cardinal numbers; ω is the first infinite cardinal.

Given two families \mathcal{N} and \mathcal{C} of subsets of a space X, we say that \mathcal{N} is a *network modulo* \mathcal{C} if for any $C \in \mathcal{C}$ and any open set $U \subset X$ with $C \subset U$ there is $N \in \mathcal{N}$ such that $C \subset N \subset U$. A space X is *Lindelöf* Σ if there exist a compact cover \mathcal{K} of the space X and a countable family \mathcal{N} of subsets of X which is a network modulo \mathcal{K} . A family \mathcal{N} of subsets of X is a *network* for X if it is a network modulo $\{\{x\}: x \in X\}$. The *network weight* of X, nw(X), is the first cardinal number κ such that X has a network of cardinality κ .

For a space X, we denote by $C_p(X)$ the set of all real-valued continuous functions having X as its domain, with its pointwise convergence topology.

From now on, we will fix a countable base $\mathcal{B}(\mathbb{R})$ for the usual topology in the set of real numbers \mathbb{R} .

For subsets E_1, \ldots, E_n of a space X and subsets U_1, \ldots, U_n of \mathbb{R} , we will use the symbol $[E_1, \ldots, E_n; U_1, \ldots, U_n]$ to denote the set $\{f \in C_p(X): f(E_i) \subset U_i \text{ for } i = 1, \ldots, n\}$. If \mathcal{E} is a family of subsets of X, then $\mathcal{W}(\mathcal{E})$ will be the family of all the sets of the form $[E_1, \ldots, E_n; B_1, \ldots, B_n]$ where $E_1, \ldots, E_n \in \mathcal{E}$, $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$ and $n \in \omega$.

Let Y be a subspace of X. By π_Y we denote the function from $C_p(X)$ to $C_p(Y)$ which restricts each element in $C_p(X)$ to Y; that is, $\pi_Y(f) = f \upharpoonright Y$. For $y \in X$ we denote $\pi_{\{y\}}$ simply as π_y .

If $X = \prod \{X_t: t \in T\}$ is a topological product, $t \in T$ and $E \subset T$, then p_t and p_E denote the natural projections onto X_t and $\prod \{X_t: t \in E\}$, respectively.

Recall that given a space X, iw(X) represents the minimum weight of all possible Tychonoff topologies that are weaker than the topology of X.

Download English Version:

https://daneshyari.com/en/article/4658806

Download Persian Version:

https://daneshyari.com/article/4658806

Daneshyari.com