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In this paper, we mainly discuss the cardinal invariants on some class of
paratopological groups. For each i ∈ {0, 1, 2, 3, 3.5}, we define the class of locally
Ti-minimal paratopological groups by the conditions that, for a Ti paratopological
group (G, τ), there exists a τ -neighborhood U of the neutral element such that U
fails to be a neighborhood of the neutral element in any Ti-semigroup topology
on G which is strictly coarser than τ . We mainly prove that (1) each UFSS
and Ti-paratopological Abelian group (G, τ) is locally Ti-minimal; (2) if (G, τ)
is a regular locally T1-minimal Abelian paratopological group then χ(G) =
πχ(G); (3) if (G, τ) is an Abelian locally T3-minimal paratopological group then
we have w(G) = nw(G). Moreover, we also discuss some relations of locally
Ti-minimal paratopological groups and some properties of subgroups of Ti-minimal
paratopological groups. Some questions are posed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All spaces are T0 unless stated otherwise. Moreover, we assume that T3 and T3.5 spaces are T1. By R, Q,
P, Z and N we denote the set of real numbers, the set of rational numbers, the set of irrational numbers,
the set of integers and the set of positive integers, respectively. The letter e denotes the neutral element
of a group. For a topological space (X, τ), a set U ⊂ X is said to be a τ -neighborhood of some point b ∈ X

if it is open in (X, τ) and b ∈ U (not to confuse, we say that U is a neighborhood of b). Readers may refer
to [2,16,17] for notation and terminology not explicitly given here.

A paratopological group G is a group G with a topology such that the product map of G × G into G is
jointly continuous. If G is a paratopological group and the inverse map of G onto itself associating x−1 with
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arbitrary x ∈ G is continuous, then G is called a topological group. However, there exists a paratopological
group which is not a topological group; Sorgenfrey line [16, Example 1.2.2] is such an example.

Minimal topological groups were introduced independently by Doïtchinov [13] and Stephenson [29]:
a Hausdorff topological group (G, τ) is called minimal if there is no Hausdorff group topology on G which is
strictly coarser than τ . The readers can see recent advances in this field in [11]. The notion of locally min-
imal topological groups was introduced by Morris and Pestov in [24]: a Hausdorff topological group (G, τ)
is called locally minimal if there exists a τ -neighborhood U of the neutral element such that U fails to be a
neighborhood of the neutral element in any Hausdorff topology on G which is strictly coarser than τ . Re-
cently, L. Außenhofer, T. Banakh, M.J. Chasco, D. Dikranjan and X. Domínguez have done much research
in the locally minimal topological groups, see [4–6]. In the past few years, the study of paratopological
groups has become an interesting topic in topological algebra, see [1–3,7–9,19–23]. Similarly to the case
of topological groups, I. Guran defines the concept of minimal Hausdorff paratopological groups in [18].
Therefore, we can define the concept of local minimality in the class of paratopological groups. However,
we have to specify a separation axiom in the case of paratopological groups since, unlike in topological
groups, no implication Ti ⇒ Tj with 0 � i < j � 3 is valid in the class of paratopological groups. Moreover,
it is an old open problem whether T3 ⇒ T3.5 in the class of paratopological groups. Therefore, for each
i ∈ {0, 1, 2, 3, 3.5}, we define the class of locally Ti-minimal paratopological groups by the conditions that,
for a Ti-paratopological group (G, τ), there exists a τ -neighborhood U of the neutral element such that U

fails to be a neighborhood of the neutral element in any Ti-semigroup topology on G which is strictly coarser
than τ .

This paper is organized as follows. In Section 3 we define the Ti-minimal paratopological groups
and discuss the relations of Ti-minimal paratopological groups and minimal topological groups, where
i ∈ {0, 1, 2, 3, 3.5}. In Section 4 we define the locally Ti-minimal paratopological groups, and discuss
the relations of locally Ti-minimal paratopological groups and locally minimal topological groups, where
i ∈ {0, 1, 2, 3, 3.5}. The aim of Section 5 is to discuss the cardinal invariants in locally Ti-minimal
paratopological groups, where i ∈ {0, 1, 2, 3, 3.5}. We show that if (G, τ) is a regular locally T1-minimal
Abelian paratopological group then χ(G) = πχ(G). In particular, a regular, bisequential locally T1-minimal
Abelian paratopological group is first-countable. Moreover, we also show that if (G, τ) is an Abelian locally
T3-minimal paratopological group then we have w(G) = nw(G). In Section 6 we present some results about
subgroups of Ti-minimal paratopological groups, where i ∈ {0, 1, 2, 3, 3.5}.

2. Preliminaries

Recall that a family U of non-empty open sets of a space X is called a π-base if for each non-
empty open set V of X, there exists a U ∈ U such that V ⊆ U . The π-character of x in X is
defined by πχ(x,X) = min{|U|: U is a local π-base at x in X}. The π-character of X is defined by
πχ(X) = sup{πχ(x,X): x ∈ X}.

The weight of a topological space X is the minimal cardinality of a basis for its topology; it will be
denoted by w(X). The netweight of X is the minimal cardinality of a network in X, that is, a family O of
subsets of X such that for any x ∈ X and any open set U containing x there is O ∈ O with x ∈ O ⊆ U .
The netweight of a space X will be denoted by nw(X). The pseudocharacter ψ(X,x) of a space X at a
point x is the minimal cardinality of a family of neighborhoods of x whose intersection is {x}. The Lindelöf
number l(X) of a space X is the minimal cardinal κ such that any open cover of X admits a subcover of
cardinality not greater than κ.

Recall that the topology of a space X is determined by a family C of its subsets provided that a set
F ⊆ X is closed in X if and only if F ∩C is closed in C, for each C ∈ C . If the topology of X is determined
by a family of countably many compact subsets, then X is called a kω-space.
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