

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Non-weakly almost periodic recurrent points and distributionally scrambled sets on $\Sigma_2 \times \mathbb{S}^{1 \, \stackrel{\wedge}{\approx}}$

Xinxing Wu^{a,b,*}, Guanrong Chen^b

- ^a School of Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China
- ^b Department of Electronic Engineering, City University of Hong Kong, Hong Kong Special Administrative Region

ARTICLE INFO

Article history: Received 18 March 2013 Received in revised form 22 November 2013 Accepted 22 November 2013

MSC:

primary 37D45, 54H20, 37B40 secondary 26A18, 28D20

Keywords: Distributional ϵ -chaos Weakly almost periodic point Recurrent point Li-Yorke sensitivity

ABSTRACT

Let $R_{r_0}, R_{r_1}: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ be irrational rotations and define $f: \Sigma_2 \times \mathbb{S}^1 \longrightarrow \Sigma_2 \times \mathbb{S}^1$ by

$$f(x,t) = (\sigma(x), R_{r_x}, (t)),$$

for $x = x_1 x_2 \cdots \in \Sigma_2$, $t \in \mathbb{S}^1$, where $\Sigma_2 = \{0,1\}^{\mathbb{N}}$, \mathbb{S}^1 is the unit circle, $\sigma : \Sigma_2 \longrightarrow \Sigma_2$ is a shift, and r_0 and r_1 are rotational angles. In this paper, it is proved that the system $(\Sigma_2 \times \mathbb{S}^1, f)$ has an uncountable distributionally ϵ -scrambled set for any $0 < \epsilon \le \operatorname{diam} \Sigma_2 \times \mathbb{S}^1 = 1$ in which each point is recurrent but is not weakly almost periodic. This is a positive answer to a question posed in Wang et al. (2003) [6]. Furthermore, the following results are obtained:

- (1) each distributionally scrambled set of f is not invariant;
- (2) the system $(\Sigma_2 \times \mathbb{S}^1, f)$ is Li-Yorke sensitive.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Throughout this paper, $\mathbb{N} = \{1, 2, 3, \ldots\}$ and $\mathbb{Z}^+ = \{0, 1, 2, \ldots\}$. For a dynamical system (X, g) with metric d, the set of recurrent points, almost periodic points and weakly almost periodic points of g [8] are denoted by R(g), A(g) and W(g), respectively. Define the *positive orbit* of x by the set $\mathrm{orb}_g^+(x) = \{g^n(x) \colon n \in \mathbb{Z}^+\}$.

A point $x \in X$ is called weakly almost periodic under g if, for any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that for any $n \in \mathbb{N}$, $|\{j: d(x, g^{j}(x)) < \epsilon, 0 \leq j < nN_{\epsilon}\}| \geq n$, where |A| denotes the cardinality of set A.

E-mail addresses: wuxinxing5201314@163.com (X. Wu), gchen@ee.cityu.edu.hk (G. Chen).

[‡] Project supported by YBXSZC20131046, the Hong Kong Research Grants Council under GRF Grant CityU 1109/12, and the Scientific Research Fund of Sichuan Provincial Education Department (No. 12ZA098).

^{*} Corresponding author at: School of Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China.

The notion of distributional chaos was first introduced in [4], where it was called 'strong chaos', which is characterised by a distributional function of distances between trajectories of two points. It is described as follows.

Let (X, g) be a dynamical system. For any pair $(x, y) \in X \times X$ and any $n \in \mathbb{N}$, the distributional function generated by g, x and y, $F_{x,y}^n : \mathbb{R} \longrightarrow [0, 1]$, is defined by

$$F_{x,y}^{n}(t,g) = \frac{1}{n} |\{i: \ d(g^{i}(x), g^{i}(y)) < t, \ 1 \leqslant i \leqslant n\}|.$$

Define the lower and upper distributional functions as

$$F_{x,y}(t,g) = \liminf_{n \to \infty} F_{x,y}^n(t,g),$$

and

$$F_{x,y}^*(t,g) = \limsup_{n \to \infty} F_{x,y}^n(t,g),$$

respectively. Both functions $F_{x,y}$ and $F_{x,y}^*$ are non-decreasing and $F_{x,y} \leqslant F_{x,y}^*$.

According to Schweizer and Smítal [4], a dynamical system (X,g) is distributionally ϵ -chaotic for some $\epsilon > 0$ if there exists an uncountable subset $\mathcal{S} \subset X$ such that for any pair of distinct points $x,y \in \mathcal{S}$, one has that $F_{x,y}^*(t,g) = 1$ for all t > 0 and $F_{x,y}(\epsilon,g) = 0$. The set \mathcal{S} is called a distributionally ϵ -crambled set and the pair (x,y) a distributionally ϵ -chaotic pair. If (X,g) is distributionally ϵ -chaotic for any $0 < \epsilon < \dim X$, then (X,g) is said to exhibit maximal distributional chaos. A pair $(x,y) \in X \times X$ is called a distributionally chaotic pair if it is a distributionally ϵ -chaotic pair for some $\epsilon > 0$. A set containing at least two distinct points is called a distributionally scrambled set if any pair of its distinct points is a distributionally chaotic pair. A dynamical system (X,g) is distributionally chaotic, if there exists an uncountable distributionally scrambled set in X.

Let $\Sigma = \{0, 1\}$, and consider a product space $\Sigma_2 = \Sigma^{\mathbb{N}}$ with the product topology. The space is compact and metrizable. Then, endow Σ_2 with the standard prefix metric

$$d_1(x,y) = \begin{cases} 0, & x = y, \\ \frac{1}{\min\{m \ge 1: \ x_m \ne y_m\}}, & x \ne y, \end{cases}$$

for any $x = x_1 x_2 \cdots$, $y = y_1 y_2 \cdots \in \Sigma_2$.

Define $\sigma: \Sigma_2 \longrightarrow \Sigma_2$ by $\sigma(x) = x_2x_3 \cdots$ for any $x = x_1x_2 \cdots \in \Sigma_2$, called the *shift* on Σ_2 , which is continuous. Also, $(X, \sigma|_X)$ is called a *shift space* or *subshift*, where X is a closed and invariant subset of Σ_2 .

Any element A of the set Σ^n is called an n-word over Σ and the length of A is n, denoted by |A|. A word over Σ is an element of the set $\bigcup_{n\in\mathbb{N}} \Sigma^n$. Let $A=a_1\cdots a_n\in\Sigma^n$ and $B=b_1\cdots b_m\in\Sigma^m$. Denote $AB=a_1\cdots a_nb_1\cdots b_m$ and $\overline{A}=\overline{a_1}\cdots\overline{a_n}$, where

$$\overline{a_i} = \begin{cases} 0, & a_i = 1, \\ 1, & a_i = 0. \end{cases}$$

Clearly $AB \in \Sigma^{n+m}$ and $\overline{A} \in \Sigma^n$. For any $a \in \Sigma$, denote a^n as an n-length permutation of a (for example, $0^3 = 000$), and $a^\infty = aa \cdots$ as an infinite permutation. If $x = x_1 x_2 \cdots \in \Sigma_2$ and $i \leqslant j \in \mathbb{N}$, then let $x_{[i,j]} = x_i x_{i+1} \cdots x_j$ and $x_{(i,j]} = x_{[i+1,j]}$. For any $B = b_1 \cdots b_n \in \bigcup_{n \in \mathbb{N}} \Sigma^n$, the set $[B] = \{x_1 x_2 \cdots \in \Sigma_2 : x_i = b_i, 1 \leqslant i \leqslant n\}$ is called the *cylinder* generated by B. For any $n \in \mathbb{N}$, let $\mathcal{B}_n = \{[b_1 \cdots b_n] : b_i \in \Sigma, 1 \leqslant i \leqslant n\}$.

Download English Version:

https://daneshyari.com/en/article/4658823

Download Persian Version:

https://daneshyari.com/article/4658823

<u>Daneshyari.com</u>