

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Factorization properties of paratopological groups

Topology and it Application

Li-Hong Xie^{a,1}, Shou Lin^{b,1}, Mikhail Tkachenko^{c,*,2}

^a School of Mathematics, Sichuan University, Chengdu 610065, PR China

^b Institute of Mathematics, Ningde Normal University, Ningde 352100, PR China

^c Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186,

Col. Vicentina, Iztapalapa, C.P. 09340, México, D.F., Mexico

ARTICLE INFO

Article history: Received 17 December 2012 Accepted 2 August 2013

MSC: primary 22A30, 54H10 secondary 54D30, 54A25

Keywords: Paratopological group \mathbb{R} -factorizable σ -compact Lindelöf Σ -space Symmetry number

ABSTRACT

In this article we continue the study of \mathbb{R} -factorizability in paratopological groups. It is shown that: (1) all concepts of \mathbb{R} -factorizability in paratopological groups coincide; (2) a Tychonoff paratopological group G is \mathbb{R} -factorizable if and only if it is totally ω -narrow and has property ω -QU; (3) every subgroup of a T_1 paratopological group G is \mathbb{R} -factorizable provided that the topological group G^* associated to G is a Lindelöf Σ -space, i.e., G is a totally Lindelöf Σ -space; (4) if $\Pi = \prod_{i \in I} G_i$ is a product of T_1 paratopological groups which are totally Lindelöf Σ -spaces, then each dense subgroup of Π is \mathbb{R} -factorizable. These results answer in the affirmative several questions posed earlier by M. Sanchis and M. Tkachenko and by S. Lin and L.-H. Xie.

@ 2013 Elsevier B.V. All rights reserved.

1. Introduction

A paratopological (semitopological) group is a group with a topology such that multiplication on the group is jointly (separately) continuous. If in addition inversion on the group is continuous, then it is called a *topological* (quasitopological) group.

For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $p: G \to L$ onto a second-countable topological group L and a continuous real-valued function h on L such that $f = h \circ p$ (see [7, Example 37]). The conclusion remains valid for pseudocompact topological groups, a result due to W.W. Comfort and K.A. Ross [3]. These facts motivated the third listed author to introduce \mathbb{R} -factorizable groups in [15] as the topological groups G with the property that every continuous real-valued function on G can be factorized through a continuous homomorphism onto a second-countable topological group. The class of \mathbb{R} -factorizable groups is unexpectedly wide. For example,

 $[\]ast\,$ Corresponding author.

E-mail addresses: xielihong2011@yahoo.cn (L.-H. Xie), shoulin60@163.com (S. Lin), mich@xanum.uam.mx (M. Tkachenko).

 $^{^1}$ These authors were supported by the NSFC (Nos. 10971185, 11171162, 11201414).

 $^{^2\,}$ The third listed author was supported by CONACyT of Mexico, grant number CB-2012-01 178103.

it contains arbitrary subgroups of σ -compact (and even Lindelöf Σ -) groups, topological products of Lindelöf Σ -groups, and their dense subgroups [14]. For other properties of this class of topological groups, the reader is referred to [16,17].

Similarly to the case of topological groups, M. Sanchis and M. Tkachenko introduced in [11] the classes of \mathbb{R}_i -factorizable paratopological groups, for $i \in \{1, 2, 3, 3.5\}$. The need in the use of four different subscripts was due to the fact that the classes of T_1 , Hausdorff, regular and, possibly, completely regular paratopological groups are all distinct, while T_0 topological groups are completely regular. As in the case of topological groups, the classes of \mathbb{R}_i -factorizable paratopological groups are very wide. For example, it was proved in [11] that every Hausdorff (regular) Lindelöf totally ω -narrow paratopological group is \mathbb{R}_2 -factorizable), and that every subgroup of a Hausdorff (regular) σ -compact paratopological group is \mathbb{R}_2 -factorizable (resp., \mathbb{R}_3 -factorizable). Also, it was recently shown in [12] that for every continuous real-valued function f on a *feebly compact* paratopological group G (no separation requirement on G is imposed), one can find a continuous homomorphism $\pi : G \to H$ onto a compact metrizable *topological group* H and a continuous real-valued function h on H such that $f = h \circ \pi$. As usual, we call a space X feebly compact if every locally finite family of open sets in X is finite.

The following question was posed by M. Sanchis and M. Tkachenko in [11].

Question 1.1. ([11, Question 5.4]) Suppose that H is a Hausdorff paratopological group such that the associated topological group H^* is a Lindelöf Σ -space. Is every subgroup of $H \mathbb{R}_2$ -factorizable?

We answer this question affirmatively in Theorem 4.8 even if H satisfies only the T_1 separation axiom.

For the further study of \mathbb{R} -factorizable topological groups, L.-H. Xie and S. Lin generalized the concept of uniform continuity of real-valued functions on topological groups. Modifying *property* U defined in [5], they introduced *property* ω -U and established that a topological group is \mathbb{R} -factorizable if and only if it is ω -narrow and has property ω -U (see [22, Theorem 4.9]). Recently, with the aim to study open homomorphic images of \mathbb{R}_i -factorizable paratopological groups, L.-H. Xie and S. Lin [23] extended property ω -U to paratopological groups. They proved that if G is a completely regular \mathbb{R}_2 -factorizable (\mathbb{R}_3 -factorizable) paratopological group and $p: G \to K$ is a continuous open homomorphism onto a paratopological group K satisfying $Hs(K) \leq \omega$ ($Ir(K) \leq \omega$), then K is \mathbb{R}_2 -factorizable (resp., \mathbb{R}_3 -factorizable). Here Hs(G) and Ir(G) stand, respectively, for the Hausdorff number and the index of regularity of the paratopological group G (see the definitions in [18]). We show in Proposition 3.20 that both restrictions $Hs(K) \leq \omega$ and $Ir(K) \leq \omega$ on the group K in [23] can be dropped.

It was also proved in [23] that every dense subgroup of a topological product of regular paratopological groups which are Lindelöf Σ -spaces is \mathbb{R}_3 -factorizable and the following question was posed:

Question 1.2. ([23, Question 6.1]) Are dense subgroups of topological products of Hausdorff σ -compact paratopological groups \mathbb{R}_2 -factorizable?

We give the positive answer to this question in Corollary 4.15 even in the case when the factors are T_1 -spaces.

The article is organized as follows. In Section 3 we modify slightly the original definition of \mathbb{R}_i -factorizability given in [11] by eliminating the separation restrictions on a paratopological group G (but keeping these restrictions for second-countable continuous homomorphic images of G). Having a recourse to [21], we show that *all* variants of \mathbb{R} -factorizability in paratopological groups are equivalent to its weakest form, when the second-countable continuous homomorphic images of a given paratopological group are not assumed to satisfy any separation axiom.

Making use of property ω -QU (a form of property ω -U designed for paratopological groups), we characterize Tychonoff \mathbb{R} -factorizable paratopological groups. It is proved in Theorem 3.14 that every totally Download English Version:

https://daneshyari.com/en/article/4658852

Download Persian Version:

https://daneshyari.com/article/4658852

Daneshyari.com