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We prove that the independence complexes of some grids have exponential Betti num-
bers. This corresponds to the number of ground states in the hard-core model in statistical
physics with fermions in the vertices of the grid.
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1. Introduction

The purpose of this paper is to investigate some topological questions arising from the study of supersymmetric lattice
models in statistical physics. We will begin by explaining this motivation, but the mathematical content of the paper belongs
to combinatorial algebraic topology.

Suppose one has a finite graph L, which in applications is usually a periodic lattice with some boundary conditions.
Square, triangular or hexagonal grids are the most notable examples. The vertices of the graph can be occupied by par-
ticles, such as fermions, which satisfy the hard-core restriction: two adjacent vertices cannot be occupied simultaneously.
A configuration of particles which satisfies this assumption is an independent set in the graph L.

Associated with L there is a simplicial complex called the independence complex of L and denoted I(L). Its vertices are
the vertices of L and its faces are the independent sets in L. It is a standard object studied in combinatorial algebraic
topology. There is a close connection between the simplicial and topological invariants of I(L) and certain characteristics
of the corresponding lattice model which are of interest to physicists. It is beyond the scope of this paper to discuss this
relationship in detail; we refer to [10] and we limit ourselves to presenting just the most basic dictionary:
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the partition function of L the f -polynomial of I(L),

the Witten index of L minus the reduced Euler characteristic −χ̃ (I(L)),

the number of zero energy ground states the dimension of H̃∗(I(L);Q).

There has been some very successful work calculating the Witten index, homology groups or indeed the complete homotopy
type of the independence complex for various lattices, e.g. [2,6–9,11–14,22]. In this paper we focus on the large-scale
picture. Computer simulations of van Eerten [3] indicate that for some types of lattices, as their size increases, the number
of ground states grows exponentially with the number of vertices, that is

dim H̃∗
(

I(L)
) ∼ av(L)

for some constant a depending on the type of the lattice, where v(L) denotes the number of vertices in a graph L. This sit-
uation is called superfrustration and has interesting physical implications, see [9]. Engström [5] developed a general method
of computing upper bounds for the constant a. For the lattices of [3] it gives bounds very close to the values predicted
in [3].

This paper has two main parts. In the first one we present a method which can be used to construct exponentially many
linearly independent homology classes in I(L) for graphs L of certain type. That proves superfrustration of certain lattices
and we give examples based on modifications of the triangular lattice. In the second part we prove a generalization of the
main result of [5], which can sometimes give better upper bounds.

Both methods work particularly nicely with one type of lattice studied in [3,5]: the hexagonal dimer, also known as the
Kagome lattice (see Fig. 1). Under suitable divisibility conditions on the height and width we will prove that a graph H of
that type satisfies:

1.02v(H) ≈ (
21/36)v(H) � dim H̃∗

(
I(H)

)
�

(
141/36 · 21/6)v(H) ≈ 1.21v(H).

We will prove the lower bound in Section 4 and the upper bound in Section 6. The previous upper bound of [5] was
21/3 ≈ 1.26 and the experimental approximation by [3] is 1.25 ± 0.1.

Our technique for lower bounds produces slightly more than just homology classes: we obtain a large wedge of spheres
that splits off. For instance, for a suitable lattice H of Kagome type, this reads as a homotopy equivalence

I(H) �
( (21/36)v(H)∨

S2v(H)/9−1
)

∨ X

for some space X . This type of result is proved in Section 5.

Remark 1.1. Estimations as above can be compared against the absolute upper bound: for any graph G we have

dim H̃∗
(

I(G)
)
�

(
22/5)v(G) ≈ 1.32v(G).

This follows from the results of [17]; for another short proof see [1].

2. Notation

Let G = (V (G), E(G)) be a simple, undirected graph. Our main object of interest is the independence complex of G .

Definition 2.1. An independent set in G is a subset W ⊆ V (G) such that for any u, v ∈ W we have uv /∈ E(G).
The independence complex I(G) of the graph G is the simplicial complex with vertex set V (G) whose faces are all the

independent sets in G .

We define v(G) = |V (G)|. For any vertex v we write N[v] for the closed neighbourhood of v , that is the set consisting
of v and all its adjacent vertices in G . For any set W ⊆ V (G) we define N[W ] = ⋃

v∈W N[v].
For any simplicial complex K and a subset U ⊆ V (K ) of the vertices K [U ] denotes the induced subcomplex of K with

vertex set U . The same notation is used for graphs. If H is an induced subgraph of G then I(H) is an induced subcomplex of
I(G). By |K | we denote the number of faces in K , including the empty one. The join K ∗ L of two complexes K and L with
disjoint vertex sets is the simplicial complex whose faces are the unions σ ∪ τ for σ ∈ K and τ ∈ L. For any two graphs G
and H , if G 
 H is their disjoint union, we have

I(G 
 H) = I(G) ∗ I(H).

The symbol Sk denotes the topological sphere of dimension k. The (unreduced) suspension Σ K is the join K ∗ S0. If e is the
graph consisting of a single edge then I(e) = S0.

The reduced homology and cohomology groups of K , denoted H̃∗(K ;Q), H̃∗(K ;Q), are the homology groups of the
augmented chain, respectively cochain complex of K . Throughout the paper we always use rational coefficients and omit
them from notation. We have H̃i(Σ K ) = H̃i−1(K ). There is a standard bilinear pairing, denoted 〈·,·〉:

〈·,·〉 : H̃ i(K ) ⊗ H̃i(K ) →Q
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