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The aim of this paper is to discuss the intersection properties of generalized Helly families
for topological spaces and inverse limit spaces. This concept is a generalization of Helly
family. A generalized Helly family C is a countable family of ∞-connected subsets of a
topological space X satisfying the following conditions: the intersection

⋂
E of each finite

subfamily E ⊂ C is ∞-connected; and the intersection
⋂

D of each proper subfamily D ⊂
C is nonempty.
In [6], Kulpa (1997) extended the Helly convex-set theorem onto topological spaces in
terms of Helly families. Here, we improve his result. We show that if C is a generalized
Helly family of compact subsets of a topological space X and U is a countable covering of
X with C j ⊂ U j , for each j ∈N, then

⋂
D is nonempty.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the current article, we will introduce the concept of generalized Helly family. Then by using the tools of [6], we will
provide some intersection properties for countable coverings of topological spaces and inverse limit spaces, which improve
the results of [6].

The Helly theorem which was first published in 1921 and proved for X = R
n plays an important role in the geometry of

convex sets. Other recent results related to the Helly theorem can be found in [2].
In [1], Chichilnisky provided some extensions of the Helly theorem and gave some applications of this theorem in econ-

omy. Then Kulpa [4] by using the Brouwer fixed point theorem strengthened this result.
In order to be more precise, let us introduce some notations. We shall use the notation [p0, . . . , pn] := conv{p0, . . . , pn}

for n-dimensional geometric simplex spanned by vertices pi , where the points p0, . . . , pn are affinely independent.
A k-dimensional simplex spanned by any k + 1 of the vertices pi of a simplex S = [p0, . . . , pn] is called a k-face of S .
The union of all k-faces of the simplex S is called the k-skeleton of S . Also the (n − 1)-skeleton of n-dimensional simplex S
is said to be its geometric boundary ∂ S .

A topological space X is k-connected, if each continuous map f : ∂ S → X has a continuous extension over S; F : S → X ,
F |∂ S = f . If X is k-connected for each k = 0,1, . . . , then X is said to be ∞-connected.
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We will now discuss the terminology of the article. In Section 2, we introduce the generalized Helly family.

Definition 2.6. A family C = {C j: j ∈ Z+} of subsets of a topological space X is said to be a generalized Helly family if the
following holds:

For each finite subset I ⊂ Z+ , the intersection
⋂

i∈I Ci is a nonempty ∞-connected set.
For each infinite proper subset I ⊂ Z+ , the intersection

⋂
i∈I Ci is nonempty.

Then we extend the lemma on indexed covering for an infinite dimensional simplex to obtain the following result.

Theorem 2.12. Suppose C = {C j: j ∈ Z+} is a generalized Helly family of compact subsets of a topological space X. Then for each open
(closed) covering U = {U j: j ∈ Z+} of X such that C j ⊂ U j for each j ∈ Z+ , the intersection

⋂
U is a nonempty set.

The previous result allows us to deduce the following theorem.

Theorem 2.13. Let C = {C j: j ∈ Z+} be a generalized Helly family of compact subsets of a topological space X. Then for each open
(closed) covering U = {U j: j ∈ Z+} of X such that C j ∩ U j = ∅, for each j ∈ Z+ , the intersection

⋂
U is a nonempty set.

The next corollary is an immediate consequence of the above theorem.

Corollary 2.14. If {A j: j ∈ Z+} is an open (closed) covering of infinite dimensional simplex �∞
0 such that A j ∩ S j = ∅, where

S j = {x ∈ �∞
0 : ∀i > j, xi = 0}, for j ∈ Z+ , then the intersection

⋂
j A j is nonempty.

In [3], Idczak and Majewski provided a generalization of the classical Poincaré–Miranda theorem [5] to the case of a
denumerable set of continuous functions of denumerable number of variables.

In Section 3, we explore some consequences of generalized Poincaré–Miranda theorem. Suppose that I∞ = [0,1]×[0,1]×
· · · is the infinite dimensional cube of R∞ and

I−i = {
x ∈ I∞: xi = 0

}
, I+i = {

x ∈ I∞: xi = 1
}
.

Theorem 3.2. If maps g,h : I∞ → I∞ are continuous and if h(I−i ) ⊂ I−i and h(I+i ) ⊂ I+i for each i ∈ N, then there exists a point
c ∈ I∞ such that g(c) = h(c). Moreover, any continuous map g : I∞ → I∞ has a fixed point.

Let �∞
0 be the infinite dimensional simplex. Let us mention that �∞

0 is homeomorphic to the Hilbert cube H [7]. So we
conclude the following result.

Corollary 3.3. If g :�∞
0 → �∞

0 is a continuous map then g has a fixed point.

The following theorem is an extension of non-squeezing theorem [5] to infinite dimensional case.

Theorem 3.7. Let X = lim←−{Xn,qn} be an inverse limit metric space and h : I∞ → X be a continuous map onto X such that h(I−i ) ∩
h(I+i ) = ∅ for each i ∈N. We take hn := h|In . Also let hn(In) ⊂ Xn and the following diagram commutes:

In+1

pn

hn+1 Xn+1

qn

In
hn

Xn

Then X is infinite dimensional.

2. Intersection properties of generalized Helly families

Let R
∞ be the product of countably many copies of R. We equip R

∞ with the standard product topology, which is
metrizable by the complete metric

d̄(x, y) =
∞∑

i=1

|xi − yi|
2i(1 + |xi − yi|) ,

see [7]. The standard n-simplex in R
n+1, denoted �n , is the convex hull of the n + 1 standard basis vectors of Rn .
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