

Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The intersection properties of generalized Helly families for inverse limit spaces *

F.H. Ghane*, Hadi Passandideh, Hamid Torabi

Department of Pure Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad (FUM), PO Box 1159, Mashhad 91775, Iran

ARTICLE INFO

Article history: Received 4 August 2012 Received in revised form 23 May 2013 Accepted 31 May 2013

MSC: 52A35 54H25 47H10

Keywords: Infinite dimensional singular simplex Generalized Helly family Inverse limit space Poincaré-Miranda theorem

ABSTRACT

The aim of this paper is to discuss the intersection properties of generalized Helly families for topological spaces and inverse limit spaces. This concept is a generalization of Helly family. A generalized Helly family $\mathcal C$ is a countable family of ∞ -connected subsets of a topological space X satisfying the following conditions: the intersection $\bigcap \mathcal E$ of each finite subfamily $\mathcal E \subset \mathcal C$ is ∞ -connected; and the intersection $\bigcap \mathcal D$ of each proper subfamily $\mathcal D \subset \mathcal C$ is nonempty.

In [6], Kulpa (1997) extended the Helly convex-set theorem onto topological spaces in terms of Helly families. Here, we improve his result. We show that if \mathcal{C} is a generalized Helly family of compact subsets of a topological space X and \mathcal{U} is a countable covering of X with $C_j \subset U_j$, for each $j \in \mathbb{N}$, then $\bigcap \mathcal{D}$ is nonempty.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the current article, we will introduce the concept of generalized Helly family. Then by using the tools of [6], we will provide some intersection properties for countable coverings of topological spaces and inverse limit spaces, which improve the results of [6].

The Helly theorem which was first published in 1921 and proved for $X = \mathbb{R}^n$ plays an important role in the geometry of convex sets. Other recent results related to the Helly theorem can be found in [2].

In [1], Chichilnisky provided some extensions of the Helly theorem and gave some applications of this theorem in economy. Then Kulpa [4] by using the Brouwer fixed point theorem strengthened this result.

In order to be more precise, let us introduce some notations. We shall use the notation $[p_0, ..., p_n] := conv\{p_0, ..., p_n\}$ for n-dimensional geometric simplex spanned by vertices p_i , where the points $p_0, ..., p_n$ are affinely independent. A k-dimensional simplex spanned by any k+1 of the vertices p_i of a simplex $S = [p_0, ..., p_n]$ is called a k-face of S. The union of all k-faces of the simplex S is called the k-skeleton of S. Also the (n-1)-skeleton of n-dimensional simplex S is said to be its geometric boundary ∂S .

A topological space X is k-connected, if each continuous map $f: \partial S \to X$ has a continuous extension over S; $F: S \to X$, $F|_{\partial S} = f$. If X is k-connected for each $k = 0, 1, \ldots$, then X is said to be ∞ -connected.

E-mail addresses: ghane@math.um.ac.ir (F.H. Ghane), hadi.passandideh.1983@gmail.com (H. Passandideh), hamid_torabi86@yahoo.com (H. Torabi).

^{*} This research supported by a grant from Ferdowsi University of Mashhad No. MP92297GAN.

^{*} Corresponding author.

We will now discuss the terminology of the article. In Section 2, we introduce the generalized Helly family.

Definition 2.6. A family $C = \{C_j: j \in \mathbb{Z}_+\}$ of subsets of a topological space X is said to be a generalized Helly family if the following holds:

For each finite subset $I \subset \mathbb{Z}_+$, the intersection $\bigcap_{i \in I} C_i$ is a nonempty ∞ -connected set.

For each infinite proper subset $I \subset \mathbb{Z}_+$, the intersection $\bigcap_{i \in I} C_i$ is nonempty.

Then we extend the lemma on indexed covering for an infinite dimensional simplex to obtain the following result.

Theorem 2.12. Suppose $C = \{C_j: j \in \mathbb{Z}_+\}$ is a generalized Helly family of compact subsets of a topological space X. Then for each open (closed) covering $U = \{U_j: j \in \mathbb{Z}_+\}$ of X such that $C_j \subset U_j$ for each $j \in \mathbb{Z}_+$, the intersection $\cap U$ is a nonempty set.

The previous result allows us to deduce the following theorem.

Theorem 2.13. Let $C = \{C_j: j \in \mathbb{Z}_+\}$ be a generalized Helly family of compact subsets of a topological space X. Then for each open (closed) covering $U = \{U_i: j \in \mathbb{Z}_+\}$ of X such that $C_i \cap U_i = \emptyset$, for each $j \in \mathbb{Z}_+$, the intersection $\bigcap U$ is a nonempty set.

The next corollary is an immediate consequence of the above theorem.

Corollary 2.14. If $\{A_j: j \in \mathbb{Z}_+\}$ is an open (closed) covering of infinite dimensional simplex Δ_0^{∞} such that $A_j \cap S_j = \emptyset$, where $S_j = \{x \in \Delta_0^{\infty}: \forall i > j, \ x_i = 0\}$, for $j \in \mathbb{Z}_+$, then the intersection $\bigcap_i A_j$ is nonempty.

In [3], Idczak and Majewski provided a generalization of the classical Poincaré–Miranda theorem [5] to the case of a denumerable set of continuous functions of denumerable number of variables.

In Section 3, we explore some consequences of generalized Poincaré–Miranda theorem. Suppose that $I^{\infty} = [0, 1] \times [0, 1] \times \cdots$ is the infinite dimensional cube of \mathbb{R}^{∞} and

$$I_i^- = \{ x \in I^\infty \colon x_i = 0 \}, \qquad I_i^+ = \{ x \in I^\infty \colon x_i = 1 \}.$$

Theorem 3.2. If maps $g,h:I^{\infty}\to I^{\infty}$ are continuous and if $h(I_i^-)\subset I_i^-$ and $h(I_i^+)\subset I_i^+$ for each $i\in\mathbb{N}$, then there exists a point $c\in I^{\infty}$ such that g(c)=h(c). Moreover, any continuous map $g:I^{\infty}\to I^{\infty}$ has a fixed point.

Let Δ_0^{∞} be the infinite dimensional simplex. Let us mention that Δ_0^{∞} is homeomorphic to the Hilbert cube \mathcal{H} [7]. So we conclude the following result.

Corollary 3.3. If $g: \Delta_0^{\infty} \to \Delta_0^{\infty}$ is a continuous map then g has a fixed point.

The following theorem is an extension of non-squeezing theorem [5] to infinite dimensional case.

Theorem 3.7. Let $X = \varprojlim \{X_n, q_n\}$ be an inverse limit metric space and $h: I^{\infty} \to X$ be a continuous map onto X such that $h(I_i^-) \cap h(I_i^+) = \emptyset$ for each $i \in \mathbb{N}$. We take $h_n := h|_{I^n}$. Also let $h_n(I^n) \subset X_n$ and the following diagram commutes:

$$I^{n+1} \xrightarrow{h_{n+1}} X_{n+1}$$

$$\downarrow p_n \qquad \qquad \downarrow q_n$$

$$\downarrow I^n \xrightarrow{h_n} X_n$$

Then *X* is infinite dimensional.

2. Intersection properties of generalized Helly families

Let \mathbb{R}^{∞} be the product of countably many copies of \mathbb{R} . We equip \mathbb{R}^{∞} with the standard product topology, which is metrizable by the complete metric

$$\bar{d}(x, y) = \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)},$$

see [7]. The standard *n*-simplex in \mathbb{R}^{n+1} , denoted Δ_n , is the convex hull of the n+1 standard basis vectors of \mathbb{R}^n .

Download English Version:

https://daneshyari.com/en/article/4658899

Download Persian Version:

https://daneshyari.com/article/4658899

<u>Daneshyari.com</u>