Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Some observations on compact indestructible spaces

Angelo Bella

Department of Mathematics, University of Catania, Citta' universitaria viale A. Doria 6, 95125 Catania, Italy

ARTICLE INFO

Article history: Received 6 November 2012 Received in revised form 28 May 2013 Accepted 9 June 2013

MSC: 54A25 54D55 90D44

Keywords: Compact indestructibility Lindelöf indestructibility Topological games Pseudoradial Sequentially compact Finite derived set property

ABSTRACT

Inspired by a recent work of Dias and Tall, we show that a compact indestructible space is sequentially compact. We also prove that a Lindelöf T_2 indestructible space has the finite derived set property and a compact T_2 indestructible space is pseudoradial. Finally, we observe that under CH a compact weakly Whyburn space of countable tightness is indestructible.

© 2013 Elsevier B.V. All rights reserved.

A compact space is indestructible if it remains compact in any countably closed forcing extension. This is a particular case of the notion of Lindelöf indestructibility, whose study was initiated by Tall in [14]. Since countable compactness is preserved in any countably closed forcing, a space is compact indestructible if and only if it is compact and Lindelöf indestructibility with a certain infinite topological game was later discovered by Scheepers and Tall [12] (see Proposition 1).

 $G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$ denotes the game of length ω_1 played on a topological space X by two players I and II in the following way: at the α -th inning player I chooses an open cover \mathcal{U}_{α} of X and player II responds by taking an element $U_{\alpha} \in \mathcal{U}_{\alpha}$. Player II wins if and only if $\{U_{\alpha}: \alpha < \omega_1\}$ covers X.

Proposition 1. ([12, Theorem 1]) A Lindelöf space X is indestructibly Lindelöf if and only if player I does not have a winning strategy in $G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$.

Recently, Dias and Tall [7] started to investigate the topological structure of compact indestructible spaces. In particular, they proved that a compact T_2 indestructible space contains a non-trivial convergent sequence [7, Corollary 3.4].

The main aim of this short note is to strengthen the above result, by showing that indestructibility actually gives even more than sequential compactness (Theorem 5). However, indestructibility forces a compact space to be sequentially compact in the absolute general case, that is by assuming no separation axiom (Theorem 2). The same proof, with minor changes, will show that a Lindelöf T_2 indestructible space has the finite derived set property (Theorem 3).

As usual, $A \subseteq^* B$ means $|A \setminus B| < \aleph_0$ (mod finite inclusion).

CrossMark

E-mail address: bella@dmi.unict.it.

^{0166-8641/\$ –} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2013.06.004

Theorem 2. Every compact indestructible space is sequentially compact.

Proof. Let *X* be a compact indestructible space and assume that *X* is not sequentially compact. Our task is to show that in this case player I would have a winning strategy in the game $G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$. Fix a sequence $\langle a_n: n < \omega \rangle$ with no convergent subsequence and let $A_0 = \{a_n: n < \omega\}$. For each $x \in X$ there is an open set U_x^1 such that $x \in U_x^1$ and $|A_0 \setminus U_x^1| = \aleph_0$. The first move of player I is the open cover $\mathcal{U}_1 = \{U_x^1: x \in X\}$. If player II responds by choosing $V_1 \in \mathcal{U}_1$, then let $A_1 = A_0 \setminus V_1$. For each $x \in X$ there is an open set U_x^2 such that $x \in U_x^2$ and $|A_1 \setminus U_x^2| = \aleph_0$. The second move of player I is the open cover $\mathcal{U}_2 = \{U_x^2: x \in X\}$. If player II responds by choosing $V_2 \in \mathcal{U}_2$, then let $A_2 = A_1 \setminus V_2$. Again, for each $x \in X$ player I chooses an open set U_x^3 such that $x \in U_x^3$ and $|A_2 \setminus U_x^3| = \aleph_0$, and so on. In general, at the α -th inning the moves of the two players have defined a mod finite decreasing family $\{A_\beta: \beta < \alpha\}$ of infinite subsets of A_0 . Player I fixes an infinite set $B_\alpha \subseteq A_0$ such that $B_\alpha \subseteq {\mathbb{P}}^\alpha A_\beta$ for each $\beta < \alpha$. Then, player I plays $\mathcal{U}_\alpha = \{U_\alpha^{\alpha}: x \in X\}$, where U_x^α is an open set such that $x \in U_x^3$ and $|B_\alpha \setminus U_\alpha^3| = \aleph_0$. If the response of player II is $V_\alpha \in \mathcal{U}_\alpha$, then let $A_\alpha = B_\alpha \setminus V_\alpha$. At the end of the game, the set resulting from the moves of player II is the collection $\mathcal{V} = \{V_\alpha: 1 \le \alpha < \omega_1\}$. For any finite subcovers, the compactness of X implies that the whole \mathcal{V} cannot cover X. Thus, player I wins the game, in contrast with Proposition 1. \Box

Recall that a topological space *X* has the *finite derived set* (briefly FDS) property provided that every infinite set of *X* contains an infinite subset with at most finitely many accumulation points (see for instance [5]). Since in a T_2 space a convergent sequence has only one accumulation point, we see that if a T_2 space has a countable infinite set *A* violating the finite derived set property, then for each infinite set $B \subseteq A$ and each point $x \in X$ there must be an open set U_x such that $x \in U_x$ and $|B \setminus U_x| = \aleph_0$. Notice, however, that for this much less than T_2 is needed. For instance, it suffices for the space to be SC, namely that every convergent sequence together with the limit point is a closed subset (see [5]).

With this observation in mind, we can modify the above proof to get the following.

Theorem 3. A Lindelöf T₂ indestructible space has the finite derived set property.

Proof. Let *X* be a Lindelöf T_2 indestructible space and assume that *X* does not have the FDS property. As in the proof of Theorem 2, our task is to show that in this case player I would have a winning strategy in the game $G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$. Fix a countable infinite set $A \subseteq X$ witnessing the failure of the FDS property. Taking into account the paragraph before the theorem, for each infinite set $B \subseteq A$ and each $x \in X$ there is an open set U_x such that $x \in U_x$ and $|B \setminus U_x| = \aleph_0$. Now, the strategy of player I is exactly the same as that in the proof of Theorem 2. At the end of the game, the set resulting from the moves of player II is again the collection $\mathcal{V} = \{U_{g|\alpha+1}: \alpha < \omega_1\}$. We claim that \mathcal{V} cannot cover *X*. Otherwise, by the Lindelöfness of *X*, there should exist a countable set of ordinals $S \subseteq \omega_1$ such that the subcollection $\{U_{g|\alpha+1}: \alpha < S\}$ would cover *X*. Taking some $\beta < \omega_1$ such that $\alpha < \beta$ for each $\alpha \in S$, we see that the infinite set $A_{g|\beta}$ has a finite intersection with $U_{g|\alpha+1}$ for each $\alpha \in S$. But, this implies that the infinite set $A_{g|\beta}$ does not have accumulation points in *X*, in contrast with the supposed failure of the FDS property in *A*. Thus, \mathcal{V} cannot cover *X* and again player I wins the game. \Box

The above theorem provides new information on the topological structure of a Lindelöf indestructible space. Notice that, in view of Theorem 6a of [14], Theorem 3 strengthens Theorem 1.10 of [2]. We continue by showing that for T_2 spaces Theorem 2 can be improved.

Proposition 4. ([7, Corollary 3.3]) A compact T₂ space which is not first countable at any point is destructible.

Recall that a topological space X is pseudoradial provided that for any non-closed set $A \subseteq X$ there exists a well-ordered net $S \subseteq A$ which converges to a point outside A. For more on these spaces see [6].

Clearly every compact T_1 pseudoradial space is sequentially compact, but the converse may consistently fail [8].

Theorem 5. Any compact T₂ indestructible space is pseudoradial.

Proof. Let *X* be a compact T_2 indestructible space and let *A* be a non-closed subset. We may assume, without any loss of generality, $X = \overline{A}$. Let λ be the smallest cardinal such that there exists a non-empty closed G_{λ} -set $H \subseteq X \setminus A$. As *X* is indestructible, so is the subspace *H*. Hence, by Proposition 4, *H* is first countable at some point *p*. Clearly, $\{p\}$ is a G_{λ} -set in *X* and so there are open sets $\{U_{\alpha}: \alpha < \lambda\}$ satisfying $\{p\} = \bigcap \{U_{\alpha}: \alpha < \lambda\}$. Moreover, we may assume that $\bigcap \{U_{\beta}: \beta < \alpha\} = \bigcap \{\overline{U_{\beta}}: \beta < \alpha\}$ holds for each limit ordinal α . The minimality of λ ensures that for each $\alpha < \lambda$ we may pick a point $x_{\alpha} \in A \cap \bigcap \{U_{\beta}: \beta < \alpha\}$. The compactness of *X* implies that the well-ordered net $\{x_{\alpha}: \alpha < \lambda\}$ converges to *p* and we are done. \Box

Notice that the indestructibility of a compact T_2 space is stronger than pseudoradiality: the example in Section 3 of [7] is a compact T_2 pseudoradial space which is destructible. This example is actually a radial space (= every point in the closure

Download English Version:

https://daneshyari.com/en/article/4658902

Download Persian Version:

https://daneshyari.com/article/4658902

Daneshyari.com