Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

# Approximation and interpolation by large entire cross-sections of second category sets in $\mathbb{R}^{n+1}$

## Maxim R. Burke

 $Department \ of \ Mathematics \ and \ Statistics, \ University \ of \ Prince \ Edward \ Island, \ Charlottetown, \ PE, \ C1A \ 4P3, \ Canada$ 

#### ARTICLE INFO

Article history: Received in revised form 10 September 2012 Accepted 1 July 2013

MSC: primary 54E52 secondary 03E35, 54C20, 30E10

Keywords: Kuratowski–Ulam theorem Second category Entire function Oracle-cc forcing Complex approximation and interpolation Hoischen's theorem ABSTRACT

In [M.R. Burke, Large entire cross-sections of second category sets in  $\mathbb{R}^{n+1}$ , Topology Appl. 154 (2007) 215–240], a model was constructed in which for any everywhere second category set  $A \subseteq \mathbb{R}^{n+1}$  there is an entire function  $f : \mathbb{R}^n \to \mathbb{R}$  which cuts a large section through A in the sense that  $\{x \in \mathbb{R}^n : (x, f(x)) \in A\}$  is everywhere second category in  $\mathbb{R}^n$ . Moreover, the function f can be taken so that its derivatives uniformly approximate those of a given  $C^N$  function g in the sense of a theorem of Hoischen. In the theory of the approximation of  $C^N$  functions by entire functions, it is often possible to insist that the entire function interpolates the restriction of the  $C^N$  function to a closed discrete set. In the present paper, we show how to incorporate a closed discrete interpolation set into the above mentioned theorem. When the set being sectioned is sufficiently definable, an absoluteness argument yields a strengthening of the Hoischen theorem in ZFC. We get in particular the following: Suppose  $g: \mathbb{R}^n \to \mathbb{R}$  is a  $C^N$  function,  $\varepsilon: \mathbb{R}^n \to \mathbb{R}$  is a positive continuous function,  $T \subseteq \mathbb{R}^n$  is a closed discrete set, and  $G \subseteq \mathbb{R}^{n+1}$  is a dense  $G_{\delta}$  set. Let  $A \subseteq \mathbb{R}^n$  be a countable dense set disjoint from T and for each  $x \in A$ , let  $B_x \subseteq \mathbb{R}$  be a countable dense set. Then there is a function  $f:\mathbb{R}^n\to\mathbb{R}$  which is the restriction of an entire function  $\mathbb{C}^n \to \mathbb{C}$  such that the following properties hold. (a) For all multi-indices  $\alpha$  of order at most N and all  $x \in \mathbb{R}^n$ ,  $|(D^{\alpha}f)(x) - (D^{\alpha}g)(x)| < \varepsilon(x)$ , and moreover  $(D^{\alpha}f)(x) = (D^{\alpha}g)(x)$  when  $x \in T$ . (b) For each  $x \in A$ ,  $f(x) \in B_x$ . (c)  $\{x \in \mathbb{R}^n : (x, f(x)) \in G\}$  is a dense  $G_{\delta}$  set in  $\mathbb{R}^n$ . © 2013 Elsevier B.V. All rights reserved.

# 1. Introduction

In this paper, we extend the work begun in [2].

### 1.1. Approximating smooth functions with entire functions

A theorem of Carleman [6], extending the well-known theorem of Weierstrass on approximation by polynomials of continuous functions on compact intervals, states that for every continuous function  $f : \mathbb{R} \to \mathbb{R}$ 







 $<sup>^{\</sup>circ}$  Research supported by NSERC. The author thanks Justin Moore and the Department of Mathematics at Cornell University for their hospitality while part of this work was carried out.

*E-mail address:* burke@upei.ca.

<sup>0166-8641/\$ –</sup> see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2013.07.003

and every positive continuous function  $\varepsilon : \mathbb{R} \to \mathbb{R}$ , there is a function  $g : \mathbb{R} \to \mathbb{R}$  which is the restriction to  $\mathbb{R}$  of an entire function and satisfies  $|g(x) - f(x)| < \varepsilon(x)$  for all  $x \in \mathbb{R}$ . L. Hoischen proved the following generalization which allows approximation of both f and its derivatives. In this paper, t denotes a positive integer.

**Theorem 1.1.** ([11], see also [9].) Let  $g : \mathbb{R}^t \to \mathbb{C}$ . Let  $\varepsilon : \mathbb{R}^t \to \mathbb{R}$  be a positive continuous function.

- (1) Let  $k \ge 0$  be an integer. If g is a  $C^k$  function then there is an entire function  $f : \mathbb{C}^t \to \mathbb{C}$  such that  $|(D^{\alpha}f)(x) (D^{\alpha}g)(x)| < \varepsilon(x)$  when  $x \in \mathbb{R}^t$ ,  $|\alpha| \le k$ .
- (2) If g is a  $C^{\infty}$  function then for each sequence  $0 \leq c_0 \leq c_1 \leq \cdots$  of real numbers such that  $\lim_{k\to\infty} c_k = \infty$ , there is an entire function  $f : \mathbb{C}^t \to \mathbb{C}$  such that, for all  $k = 0, 1, 2, \ldots, |(D^{\alpha}f)(x) - (D^{\alpha}g)(x)| < \varepsilon(x)$ when  $x \in \mathbb{R}^t$ ,  $|x| \geq c_k$ , and  $|\alpha| \leq k$ .

In both of these statements, if g is real-valued then we may require that f takes real values on  $\mathbb{R}^t$ .

For the case t = 1, this theorem is improved in [12] to give simultaneously approximation of the derivatives  $D^n g$  of a smooth function g as well as interpolation of the restriction of the derivatives to a closed discrete set. Hoischen's method can be adapted to functions of several variables. The adaptation requires some effort, but it has been carefully written out in [5].

**Theorem 1.2.** ([12], see also [5].) Let  $g : \mathbb{R}^t \to \mathbb{C}$ . Let  $T \subseteq \mathbb{R}^t$  be a closed discrete set and let  $\varepsilon : \mathbb{R}^t \to \mathbb{R}$  be a positive continuous function.

- (1) Let  $k \ge 0$  be an integer. If g is a  $C^k$  function then there exists an entire function  $f : \mathbb{C}^t \to \mathbb{C}$  such that (a)  $|(D^{\alpha}f)(x) - (D^{\alpha}g)(x)| < \varepsilon(x)$  for  $x \in \mathbb{R}^t$ ,  $|\alpha| \le k$ , and
  - (b)  $(D^{\alpha}f)(x) = (D^{\alpha}g)(x)$  whenever  $x \in T$ ,  $|\alpha| \leq k$ .
- (2) If g is a  $C^{\infty}$  function then for each sequence  $0 \leq c_0 \leq c_1 \leq \cdots$  of real numbers such that  $\lim_{k \to \infty} c_k = \infty$ there exists an entire function  $f : \mathbb{C}^t \to \mathbb{C}$  such that for all  $k = 0, 1, 2, \ldots$ 
  - (a)  $|(D^{\alpha}f)(x) (D^{\alpha}g)(x)| < \varepsilon(x)$  for  $x \in \mathbb{R}^t$ ,  $|x| \ge c_k$ ,  $|\alpha| \le k$ , and
  - (b)  $(D^{\alpha}f)(x) = (D^{\alpha}g)(x)$  whenever  $x \in T$ ,  $|x| \ge c_k$ ,  $|\alpha| \le k$ .

In both of these statements, if g is real-valued then we may require that f takes real values on  $\mathbb{R}^t$ .

As a device for simplifying such statements, which we need to make repeatedly throughout the paper, we introduce the following notation.

**Definition 1.3.** The set S and the relations  $f <_T^k \varepsilon$  and  $f <_{\overline{c},T} \varepsilon$  are defined as follows. The function f here is real- or complex-valued, defined on  $\mathbb{R}^t$  or  $\mathbb{C}^t$  and sufficiently differentiable for the derivatives in the definition to exist. (In this paper, we always have  $f[\mathbb{R}^t] \subseteq \mathbb{R}$  except in the statements of Hoischen's theorems above.)  $\varepsilon : \mathbb{R}^t \to \mathbb{R}$  is a positive function.

- 1. S denotes the set of all sequences  $\bar{c} = (c_i: i < \omega)$  of real numbers such that  $0 = c_0 \leq c_1 \leq \cdots$ ,  $\lim_{i \to \infty} c_i = \infty$ .
- 2. For  $k < \omega$ ,  $f <_T^k \varepsilon$  means that for all  $x \in \mathbb{R}^t$  and all multi-indices  $\alpha$  such that  $|\alpha| \leq k$ , we have (a)  $|(D^{\alpha}f)(x)| < \varepsilon(x)$ ;
  - (b)  $(D^{\alpha}f)(x) = 0$  when  $x \in T$ .

$$f <^k \varepsilon$$
 means  $f <^k_{\emptyset} \varepsilon$ .

3.  $f <_{\bar{c},T} \varepsilon$  means that for all  $x \in \mathbb{R}^t$ , all multi-indices  $\alpha$ , and all nonnegative integers k, if  $|x| \ge c_k$  and  $|\alpha| \le k$  then

Download English Version:

# https://daneshyari.com/en/article/4658913

Download Persian Version:

https://daneshyari.com/article/4658913

Daneshyari.com